add popular list
This commit is contained in:
parent
e8934395fc
commit
096accc9ab
190
app/cron_list.py
190
app/cron_list.py
@ -401,7 +401,193 @@ async def get_overbought_stocks():
|
|||||||
with open("json/stocks-list/list/overbought-stocks.json", 'wb') as file:
|
with open("json/stocks-list/list/overbought-stocks.json", 'wb') as file:
|
||||||
file.write(orjson.dumps(res_list))
|
file.write(orjson.dumps(res_list))
|
||||||
|
|
||||||
|
async def get_top_dividend_stocks():
|
||||||
|
with sqlite3.connect('stocks.db') as con:
|
||||||
|
cursor = con.cursor()
|
||||||
|
cursor.execute("PRAGMA journal_mode = wal")
|
||||||
|
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
|
||||||
|
symbols = [row[0] for row in cursor.fetchall()]
|
||||||
|
|
||||||
|
res_list = []
|
||||||
|
for symbol in symbols:
|
||||||
|
try:
|
||||||
|
|
||||||
|
# Load quote data from JSON file
|
||||||
|
analyst_rating = stock_screener_data_dict[symbol].get('analystRating',None)
|
||||||
|
analyst_counter = stock_screener_data_dict[symbol].get('analystCounter',0)
|
||||||
|
dividend_yield = stock_screener_data_dict[symbol].get('dividendYield',0)
|
||||||
|
payout_ratio = stock_screener_data_dict[symbol].get('payoutRatio',100)
|
||||||
|
if analyst_rating in ['Buy','Strong Buy'] and analyst_counter >= 10 and dividend_yield >=2 and payout_ratio < 60:
|
||||||
|
quote_data = await get_quote_data(symbol)
|
||||||
|
|
||||||
|
# Assign price and volume, and check if they meet the penny stock criteria
|
||||||
|
if quote_data:
|
||||||
|
price = round(quote_data.get('price',None), 2)
|
||||||
|
changesPercentage = round(quote_data.get('changesPercentage'), 2)
|
||||||
|
marketCap = quote_data.get('marketCap')
|
||||||
|
name = quote_data.get('name')
|
||||||
|
|
||||||
|
# Append stock data to res_list if it meets the criteria
|
||||||
|
res_list.append({
|
||||||
|
'symbol': symbol,
|
||||||
|
'name': name,
|
||||||
|
'price': price,
|
||||||
|
'changesPercentage': changesPercentage,
|
||||||
|
'marketCap': marketCap,
|
||||||
|
'dividendYield': dividend_yield
|
||||||
|
})
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
if res_list:
|
||||||
|
# Sort by market cap in descending order
|
||||||
|
res_list = sorted(res_list, key=lambda x: x['marketCap'], reverse=True)
|
||||||
|
|
||||||
|
# Assign rank to each stock
|
||||||
|
for rank, item in enumerate(res_list, start=1):
|
||||||
|
item['rank'] = rank
|
||||||
|
|
||||||
|
# Write the filtered and ranked penny stocks to a JSON file
|
||||||
|
with open("json/stocks-list/list/top-rated-dividend-stocks.json", 'wb') as file:
|
||||||
|
file.write(orjson.dumps(res_list))
|
||||||
|
|
||||||
|
async def get_highest_revenue():
|
||||||
|
with sqlite3.connect('stocks.db') as con:
|
||||||
|
cursor = con.cursor()
|
||||||
|
cursor.execute("PRAGMA journal_mode = wal")
|
||||||
|
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
|
||||||
|
symbols = [row[0] for row in cursor.fetchall()]
|
||||||
|
|
||||||
|
res_list = []
|
||||||
|
for symbol in symbols:
|
||||||
|
try:
|
||||||
|
# Load quote data from JSON file
|
||||||
|
revenue = stock_screener_data_dict[symbol].get('revenue',None)
|
||||||
|
country = stock_screener_data_dict[symbol].get('country',None)
|
||||||
|
if revenue > 1E9 and revenue < 1E12 and country == 'United States': #bug where some companies have wrong revenue
|
||||||
|
quote_data = await get_quote_data(symbol)
|
||||||
|
# Assign price and volume, and check if they meet the penny stock criteria
|
||||||
|
if quote_data:
|
||||||
|
price = round(quote_data.get('price',None), 2)
|
||||||
|
changesPercentage = round(quote_data.get('changesPercentage'), 2)
|
||||||
|
marketCap = quote_data.get('marketCap')
|
||||||
|
name = quote_data.get('name')
|
||||||
|
|
||||||
|
# Append stock data to res_list if it meets the criteria
|
||||||
|
res_list.append({
|
||||||
|
'symbol': symbol,
|
||||||
|
'name': name,
|
||||||
|
'price': price,
|
||||||
|
'changesPercentage': changesPercentage,
|
||||||
|
'marketCap': marketCap,
|
||||||
|
'revenue': revenue
|
||||||
|
})
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
if res_list:
|
||||||
|
# Sort by market cap in descending order
|
||||||
|
res_list = sorted(res_list, key=lambda x: x['revenue'], reverse=True)[:500]
|
||||||
|
|
||||||
|
# Assign rank to each stock
|
||||||
|
for rank, item in enumerate(res_list, start=1):
|
||||||
|
item['rank'] = rank
|
||||||
|
|
||||||
|
# Write the filtered and ranked penny stocks to a JSON file
|
||||||
|
with open("json/stocks-list/list/highest-revenue.json", 'wb') as file:
|
||||||
|
file.write(orjson.dumps(res_list))
|
||||||
|
|
||||||
|
async def get_highest_income_tax():
|
||||||
|
with sqlite3.connect('stocks.db') as con:
|
||||||
|
cursor = con.cursor()
|
||||||
|
cursor.execute("PRAGMA journal_mode = wal")
|
||||||
|
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%' AND symbol NOT LIKE '%-%'")
|
||||||
|
symbols = [row[0] for row in cursor.fetchall()]
|
||||||
|
|
||||||
|
res_list = []
|
||||||
|
for symbol in symbols:
|
||||||
|
try:
|
||||||
|
# Load quote data from JSON file
|
||||||
|
income_tax = stock_screener_data_dict[symbol].get('incomeTaxExpense',0)
|
||||||
|
country = stock_screener_data_dict[symbol].get('country',None)
|
||||||
|
if income_tax > 10E6 and country == 'United States':
|
||||||
|
quote_data = await get_quote_data(symbol)
|
||||||
|
# Assign price and volume, and check if they meet the penny stock criteria
|
||||||
|
if quote_data:
|
||||||
|
price = round(quote_data.get('price',None), 2)
|
||||||
|
changesPercentage = round(quote_data.get('changesPercentage'), 2)
|
||||||
|
marketCap = quote_data.get('marketCap')
|
||||||
|
name = quote_data.get('name')
|
||||||
|
|
||||||
|
# Append stock data to res_list if it meets the criteria
|
||||||
|
res_list.append({
|
||||||
|
'symbol': symbol,
|
||||||
|
'name': name,
|
||||||
|
'price': price,
|
||||||
|
'changesPercentage': changesPercentage,
|
||||||
|
'marketCap': marketCap,
|
||||||
|
'incomeTaxExpense': income_tax
|
||||||
|
})
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
if res_list:
|
||||||
|
# Sort by market cap in descending order
|
||||||
|
res_list = sorted(res_list, key=lambda x: x['incomeTaxExpense'], reverse=True)[:100]
|
||||||
|
|
||||||
|
# Assign rank to each stock
|
||||||
|
for rank, item in enumerate(res_list, start=1):
|
||||||
|
item['rank'] = rank
|
||||||
|
|
||||||
|
# Write the filtered and ranked penny stocks to a JSON file
|
||||||
|
with open("json/stocks-list/list/highest-income-tax.json", 'wb') as file:
|
||||||
|
file.write(orjson.dumps(res_list))
|
||||||
|
|
||||||
|
async def get_most_employees():
|
||||||
|
with sqlite3.connect('stocks.db') as con:
|
||||||
|
cursor = con.cursor()
|
||||||
|
cursor.execute("PRAGMA journal_mode = wal")
|
||||||
|
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
|
||||||
|
symbols = [row[0] for row in cursor.fetchall()]
|
||||||
|
|
||||||
|
res_list = []
|
||||||
|
for symbol in symbols:
|
||||||
|
try:
|
||||||
|
# Load quote data from JSON file
|
||||||
|
employees = stock_screener_data_dict[symbol].get('employees',None)
|
||||||
|
country = stock_screener_data_dict[symbol].get('country',None)
|
||||||
|
if employees > 10_000 and country == 'United States':
|
||||||
|
quote_data = await get_quote_data(symbol)
|
||||||
|
# Assign price and volume, and check if they meet the penny stock criteria
|
||||||
|
if quote_data:
|
||||||
|
price = round(quote_data.get('price',None), 2)
|
||||||
|
changesPercentage = round(quote_data.get('changesPercentage'), 2)
|
||||||
|
marketCap = quote_data.get('marketCap')
|
||||||
|
name = quote_data.get('name')
|
||||||
|
|
||||||
|
# Append stock data to res_list if it meets the criteria
|
||||||
|
res_list.append({
|
||||||
|
'symbol': symbol,
|
||||||
|
'name': name,
|
||||||
|
'price': price,
|
||||||
|
'changesPercentage': changesPercentage,
|
||||||
|
'marketCap': marketCap,
|
||||||
|
'employees': employees
|
||||||
|
})
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
if res_list:
|
||||||
|
# Sort by market cap in descending order
|
||||||
|
res_list = sorted(res_list, key=lambda x: x['employees'], reverse=True)[:100]
|
||||||
|
|
||||||
|
# Assign rank to each stock
|
||||||
|
for rank, item in enumerate(res_list, start=1):
|
||||||
|
item['rank'] = rank
|
||||||
|
|
||||||
|
# Write the filtered and ranked penny stocks to a JSON file
|
||||||
|
with open("json/stocks-list/list/most-employees.json", 'wb') as file:
|
||||||
|
file.write(orjson.dumps(res_list))
|
||||||
|
|
||||||
|
|
||||||
async def etf_bitcoin_list():
|
async def etf_bitcoin_list():
|
||||||
@ -632,6 +818,10 @@ async def run():
|
|||||||
get_penny_stocks(),
|
get_penny_stocks(),
|
||||||
get_oversold_stocks(),
|
get_oversold_stocks(),
|
||||||
get_overbought_stocks(),
|
get_overbought_stocks(),
|
||||||
|
get_top_dividend_stocks(),
|
||||||
|
get_highest_revenue(),
|
||||||
|
get_highest_income_tax(),
|
||||||
|
get_most_employees(),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -3842,7 +3842,7 @@ async def get_statistics(data: FilterStockList, api_key: str = Security(get_api_
|
|||||||
category_type = 'sector'
|
category_type = 'sector'
|
||||||
elif filter_list == 'reits':
|
elif filter_list == 'reits':
|
||||||
category_type = 'industry'
|
category_type = 'industry'
|
||||||
elif filter_list in ['penny-stocks','overbought-stocks','oversold-stocks','faang','magnificent-seven','ca','cn','de','gb','il','in','jp','nyse','nasdaq','amex','dowjones','sp500','nasdaq100','all-stock-tickers']:
|
elif filter_list in ['highest-income-tax','most-employees','highest-revenue','top-rated-dividend-stocks','penny-stocks','overbought-stocks','oversold-stocks','faang','magnificent-seven','ca','cn','de','gb','il','in','jp','nyse','nasdaq','amex','dowjones','sp500','nasdaq100','all-stock-tickers']:
|
||||||
category_type = 'stocks-list'
|
category_type = 'stocks-list'
|
||||||
elif filter_list in ['dividend-kings','dividend-aristocrats']:
|
elif filter_list in ['dividend-kings','dividend-aristocrats']:
|
||||||
category_type = 'dividends'
|
category_type = 'dividends'
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user