update
This commit is contained in:
parent
e269182911
commit
19fab69d61
Binary file not shown.
@ -8,7 +8,7 @@ from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_sco
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import MinMaxScaler, StandardScaler
|
||||
from keras.models import Sequential
|
||||
from keras.layers import LSTM, Dense, Conv1D, Bidirectional, Attention,Dropout, BatchNormalization
|
||||
from keras.layers import LSTM, Dense, Conv1D, Dropout, BatchNormalization
|
||||
from keras.optimizers import Adam
|
||||
from keras.callbacks import EarlyStopping, ModelCheckpoint
|
||||
from keras.models import load_model
|
||||
@ -24,11 +24,11 @@ import aiofiles
|
||||
import pickle
|
||||
import time
|
||||
|
||||
#Based on the paper: https://arxiv.org/pdf/1603.00751
|
||||
# Based on the paper: https://arxiv.org/pdf/1603.00751
|
||||
|
||||
class FundamentalPredictor:
|
||||
def __init__(self):
|
||||
self.model = self.build_model() #RandomForestClassifier(n_estimators=1000, max_depth = 20, min_samples_split=10, random_state=42, n_jobs=10)
|
||||
self.model = self.build_model()
|
||||
self.scaler = MinMaxScaler()
|
||||
|
||||
def build_model(self):
|
||||
@ -36,15 +36,13 @@ class FundamentalPredictor:
|
||||
model = Sequential()
|
||||
|
||||
model.add(Conv1D(filters=64, kernel_size=3, padding='same', activation='relu', input_shape=(None, 1)))
|
||||
|
||||
model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu', input_shape=(None, 1)))
|
||||
model.add(Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'))
|
||||
|
||||
# First LSTM layer with dropout and batch normalization
|
||||
model.add(LSTM(256, return_sequences=True, kernel_regularizer=regularizers.l2(0.01)))
|
||||
model.add(Dropout(0.5))
|
||||
model.add(BatchNormalization())
|
||||
|
||||
|
||||
# Second LSTM layer with dropout and batch normalization
|
||||
model.add(LSTM(256, return_sequences=True, kernel_regularizer=regularizers.l2(0.01)))
|
||||
model.add(Dropout(0.5))
|
||||
@ -62,8 +60,7 @@ class FundamentalPredictor:
|
||||
# Dense layer with sigmoid activation for binary classification
|
||||
model.add(Dense(1, activation='sigmoid'))
|
||||
|
||||
|
||||
# Adam optimizer with a learning rate of 0.001
|
||||
# Adam optimizer with a learning rate of 0.01
|
||||
optimizer = Adam(learning_rate=0.01)
|
||||
|
||||
# Compile model with binary crossentropy loss and accuracy metric
|
||||
@ -72,7 +69,7 @@ class FundamentalPredictor:
|
||||
return model
|
||||
|
||||
def preprocess_data(self, X):
|
||||
#X = X.applymap(lambda x: 9999 if x == 0 else x) # Replace 0 with 9999 as suggested in the paper
|
||||
# X = X.applymap(lambda x: 9999 if x == 0 else x) # Replace 0 with 9999 as suggested in the paper
|
||||
X = np.where(np.isinf(X), np.nan, X)
|
||||
X = np.nan_to_num(X)
|
||||
X = self.scaler.fit_transform(X)
|
||||
@ -85,18 +82,19 @@ class FundamentalPredictor:
|
||||
X_train = self.preprocess_data(X_train)
|
||||
X_train = self.reshape_for_lstm(X_train)
|
||||
|
||||
checkpoint = ModelCheckpoint(f'ml_models/fundamental_weights/weights.keras', save_best_only=True, monitor='val_loss', mode='min')
|
||||
checkpoint = ModelCheckpoint('ml_models/weights/fundamental_weights/weights.keras',
|
||||
save_best_only=True, monitor='val_loss', mode='min')
|
||||
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
|
||||
|
||||
self.model.fit(X_train, y_train, epochs=250, batch_size=32, validation_split=0.2, callbacks=[checkpoint, early_stopping])
|
||||
self.model.save(f'ml_models/fundamental_weights/weights.keras')
|
||||
self.model.fit(X_train, y_train, epochs=250, batch_size=32,
|
||||
validation_split=0.2, callbacks=[checkpoint, early_stopping])
|
||||
self.model.save('ml_models/weights/fundamental_weights/weights.keras')
|
||||
|
||||
def evaluate_model(self, X_test, y_test):
|
||||
X_test = self.preprocess_data(X_test)
|
||||
X_test = self.reshape_for_lstm(X_test)
|
||||
|
||||
self.model = self.build_model()
|
||||
self.model = load_model(f'ml_models/fundamental_weights/weights.keras')
|
||||
self.model = load_model('ml_models/weights/fundamental_weights/weights.keras')
|
||||
|
||||
test_predictions = self.model.predict(X_test).flatten()
|
||||
|
||||
@ -111,26 +109,15 @@ class FundamentalPredictor:
|
||||
print(f"Accuracy: {round(test_accuracy * 100)}%")
|
||||
|
||||
next_value_prediction = 1 if test_predictions[-1] >= 0.5 else 0
|
||||
return {'accuracy': round(test_accuracy*100), 'precision': round(test_precision*100), 'sentiment': 'Bullish' if next_value_prediction == 1 else 'Bearish'}, test_predictions
|
||||
return {'accuracy': round(test_accuracy * 100),
|
||||
'precision': round(test_precision * 100),
|
||||
'sentiment': 'Bullish' if next_value_prediction == 1 else 'Bearish'}, test_predictions
|
||||
|
||||
def feature_selection(self, X_train, y_train,k=8):
|
||||
|
||||
selector = SelectKBest(score_func=f_classif, k=8)
|
||||
def feature_selection(self, X_train, y_train, k=8):
|
||||
selector = SelectKBest(score_func=f_classif, k=k)
|
||||
selector.fit(X_train, y_train)
|
||||
|
||||
selector.transform(X_train)
|
||||
selected_features = [col for i, col in enumerate(X_train.columns) if selector.get_support()[i]]
|
||||
|
||||
return selected_features
|
||||
|
||||
# Calculate the variance of each feature with respect to the target
|
||||
'''
|
||||
variances = {}
|
||||
for col in X_train.columns:
|
||||
grouped_variance = X_train.groupby(y_train)[col].var().mean()
|
||||
variances[col] = grouped_variance
|
||||
|
||||
# Sort features by variance and select top k features
|
||||
sorted_features = sorted(variances, key=variances.get, reverse=True)[:k]
|
||||
return sorted_features
|
||||
'''
|
||||
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user