add fail-to-deliver endpoint

This commit is contained in:
MuslemRahimi 2024-06-30 21:52:17 +02:00
parent 62c95c0da5
commit 1a5947a40f
3 changed files with 153 additions and 0 deletions

113
app/cron_fail_to_deliver.py Normal file
View File

@ -0,0 +1,113 @@
from datetime import timedelta
import os
import pandas as pd
import json
from pathlib import Path
import time
import ujson
import sqlite3
def save_json(symbol, data):
with open(f"json/fail-to-deliver/companies/{symbol}.json", 'w') as file:
ujson.dump(data, file)
def get_total_data(files_available, limit=24):
"""
Combine all the 1/2 monthly csv into 1 large csv file.
"""
combined_df = pd.DataFrame(columns=["SETTLEMENT DATE", "SYMBOL", "QUANTITY (FAILS)", "PRICE"])
for file in files_available[:limit]:
print(f"Processing file: {file}")
try:
# Read the CSV file with appropriate parameters
df = pd.read_csv(file, sep='|', quotechar='"', engine='python')
# Safely remove columns if they exist
if 'CUSIP' in df.columns:
del df['CUSIP']
if 'DESCRIPTION' in df.columns:
del df['DESCRIPTION']
# Safely convert SETTLEMENT DATE
if 'SETTLEMENT DATE' in df.columns:
df['SETTLEMENT DATE'] = pd.to_datetime(df['SETTLEMENT DATE'], format='%Y%m%d', errors='coerce')
combined_df = pd.concat([combined_df, df]).drop_duplicates()
except pd.errors.ParserError as e:
print(f"Error reading {file}: {e}")
except Exception as e:
print(f"Unexpected error with {file}: {e}")
combined_df["SETTLEMENT DATE"] = combined_df["SETTLEMENT DATE"].astype(str)
combined_df.rename(columns={
"SETTLEMENT DATE": "date",
"SYMBOL": "Ticker",
"QUANTITY (FAILS)": "failToDeliver",
"PRICE": "price"
}, inplace=True)
combined_df["T+35 Date"] = pd.to_datetime(combined_df['date'], format='%Y-%m-%d', errors="coerce") + timedelta(days=35)
combined_df["T+35 Date"] = combined_df["T+35 Date"].astype(str)
combined_df["failToDeliver"] = pd.to_numeric(combined_df["failToDeliver"], errors='coerce')
combined_df["failToDeliver"] = combined_df["failToDeliver"].fillna(0).astype(int)
combined_df = combined_df[~combined_df["Ticker"].isna()]
combined_df.sort_values(by="date", inplace=True)
print(combined_df)
return combined_df
def filter_by_ticker(combined_df):
# Group by 'Ticker' column
grouped = combined_df.groupby('Ticker')
# Dictionary to store DataFrames for each ticker
ticker_dfs = {}
# Iterate over groups
for ticker, group in grouped:
# Store each group (DataFrame) in the dictionary
ticker_dfs[ticker] = group.copy() # Use .copy() to avoid modifying original DataFrame
return ticker_dfs
if __name__ == '__main__':
con = sqlite3.connect('stocks.db')
etf_con = sqlite3.connect('etf.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
stock_symbols = [row[0] for row in cursor.fetchall()]
etf_cursor = etf_con.cursor()
etf_cursor.execute("PRAGMA journal_mode = wal")
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
con.close()
etf_con.close()
total_symbols = stock_symbols + etf_symbols
# Specify your directory path
directory_path = 'json/fail-to-deliver/csv'
# List CSV files sorted by modification time
files_available = sorted(Path(directory_path).iterdir(), key=os.path.getmtime)
combined_df = get_total_data(files_available, limit=1000)
ticker_dataframes = filter_by_ticker(combined_df)
# Example usage: print or access dataframes for each ticker
for ticker, df in ticker_dataframes.items():
if ticker in total_symbols:
data= [{k: v for k, v in d.items() if k not in ['Ticker', 'T+35 Date']} for d in df.to_dict('records')]
save_json(ticker, data)

22
app/cron_trading_halt.py Normal file
View File

@ -0,0 +1,22 @@
import os
import sys
import pandas as pd
def main(method=""):
print("Getting Trading Halt...")
url = "https://www.nyse.com/api/trade-halts/current/download"
df = pd.read_csv(url)
df.fillna("N/A", inplace=True)
df["Halt Date"] = df["Halt Date"].astype(str)
df["Halt Date"] = df["Halt Date"].apply(lambda x: str(x[6:] + "-" + x[:2] + "-" + x[3:5] if x != "N/A" else "N/A"))
df["Resume Date"] = df["Resume Date"].astype(str)
#df["Resume Date"] = df["Resume Date"].apply(lambda x: str(x[6:] + "-" + x[:2] + "-" + x[3:5] if x != "N/A" else "N/A"))
del df["Name"]
print(df)
print("Trading Halt Successfully Completed...\n")
if __name__ == '__main__':
main()

View File

@ -2946,6 +2946,24 @@ async def get_market_maker():
except:
res = []
redis_client.set(cache_key, ujson.dumps(res))
redis_client.expire(cache_key, 3600*3600) # Set cache expiration time to 1 day
return res
@app.post("/fail-to-deliver")
async def get_fail_to_deliver(data:TickerData):
ticker = data.ticker.upper()
cache_key = f"fail-to-deliver-{ticker}"
cached_result = redis_client.get(cache_key)
if cached_result:
return ujson.loads(cached_result)
try:
with open(f"json/fail-to-deliver/companies/{ticker}.json", 'r') as file:
res = ujson.load(file)
except:
res = []
redis_client.set(cache_key, ujson.dumps(res))
redis_client.expire(cache_key, 3600*3600) # Set cache expiration time to 1 day
return res