add implied volatiltiy

This commit is contained in:
MuslemRahimi 2024-11-07 13:46:16 +01:00
parent c280d40167
commit 1df37cf81a

View File

@ -7,6 +7,13 @@ from dotenv import load_dotenv
from benzinga import financial_data
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor
import pandas as pd
import math
from scipy.stats import norm
from scipy.optimize import brentq
load_dotenv()
api_key = os.getenv('BENZINGA_API_KEY')
@ -14,6 +21,28 @@ api_key = os.getenv('BENZINGA_API_KEY')
fin = financial_data.Benzinga(api_key)
risk_free_rate = 0.05
def black_scholes_price(S, K, T, r, sigma, option_type="CALL"):
d1 = (math.log(S / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * math.sqrt(T))
d2 = d1 - sigma * math.sqrt(T)
if option_type == "CALL":
return S * norm.cdf(d1) - K * math.exp(-r * T) * norm.cdf(d2)
elif option_type == "PUT":
return K * math.exp(-r * T) * norm.cdf(-d2) - S * norm.cdf(-d1)
# Implied volatility function
def implied_volatility(S, K, T, r, market_price, option_type="CALL"):
def objective_function(sigma):
return black_scholes_price(S, K, T, r, sigma, option_type) - market_price
# Use brentq to solve for the implied volatility
try:
return brentq(objective_function, 1e-6, 3) # Bounds for volatility
except ValueError:
return None # Return None if there's no solution
def calculate_dte(date_expiration):
expiration_date = datetime.strptime(date_expiration, "%Y-%m-%d")
return (expiration_date - datetime.today()).days
@ -52,7 +81,60 @@ def options_bubble_data(chunk):
except:
break
res_filtered = [{key: value for key, value in item.items() if key in ['ticker','date', 'date_expiration', 'put_call', 'volume', 'open_interest']} for item in res_list]
res_filtered = [{key: value for key, value in item.items() if key in ['ticker','underlying_price','strike_price','price','date', 'date_expiration', 'put_call', 'volume', 'open_interest']} for item in res_list]
#================Start computing historical iv60=====================#
# Convert to DataFrame for easier manipulation
df = pd.DataFrame(res_filtered)
# Ensure correct types for dates and numerical fields
df['date'] = pd.to_datetime(df['date'])
df['date_expiration'] = pd.to_datetime(df['date_expiration'])
df['underlying_price'] = pd.to_numeric(df['underlying_price'], errors='coerce')
df['strike_price'] = pd.to_numeric(df['strike_price'], errors='coerce')
df['price'] = pd.to_numeric(df['price'], errors='coerce')
df['volume'] = pd.to_numeric(df['volume'], errors='coerce')
df['open_interest'] = pd.to_numeric(df['open_interest'], errors='coerce')
df['days_to_expiration'] = (df['date_expiration'] - df['date']).dt.days
df_30d = df[(df['days_to_expiration'] >= 40) & (df['days_to_expiration'] <= 80)]
# Calculate implied volatility for options in the 30-day range
iv_data = []
for _, option in df_30d.iterrows():
S = option['underlying_price']
K = option['strike_price']
T = option['days_to_expiration'] / 365
market_price = option['price']
option_type = "CALL" if option['put_call'] == "CALL" else "PUT"
# Check for missing values
if pd.notna(S) and pd.notna(K) and pd.notna(T) and pd.notna(market_price):
# Calculate IV
iv = implied_volatility(S, K, T, risk_free_rate, market_price, option_type)
if iv is not None:
iv_data.append({
"date": option['date'],
"IV": iv,
"volume": option['volume']
})
# Create a DataFrame with the calculated IV data
iv_df = pd.DataFrame(iv_data)
# Calculate daily IV60 by averaging IVs (weighted by volume)
def calculate_daily_iv60(group):
weighted_iv = (group["IV"] * group["volume"]).sum() / group["volume"].sum()
return weighted_iv
# Group by date and compute daily IV60
iv60_history = iv_df.groupby("date").apply(calculate_daily_iv60)
# Fill NaN values using forward fill to carry the last valid IV60 forward
iv60_history = iv60_history.ffill()
iv60_history = iv60_history.to_dict()
iv60_dict = {k.strftime('%Y-%m-%d'): v for k, v in iv60_history.items()}
#print(iv60_dict)
#====================================================================#
for option_type in ['CALL', 'PUT']:
for item in res_filtered:
@ -65,31 +147,41 @@ def options_bubble_data(chunk):
pass
#Save raw data for each ticker for options page stack bar chart
result_list = []
for ticker in chunk:
try:
ticker_filtered_data = [entry for entry in res_filtered if entry['ticker'] == ticker]
if len(ticker_filtered_data) != 0:
#sum up calls and puts for each day for the plot
# Sum up calls and puts for each day for the plot
summed_data = {}
for entry in ticker_filtered_data:
volume = int(entry['volume'])
open_interest = int(entry['open_interest'])
put_call = entry['put_call']
date_str = entry['date']
if entry['date'] not in summed_data:
summed_data[entry['date']] = {'CALL': {'volume': 0, 'open_interest': 0}, 'PUT': {'volume': 0, 'open_interest': 0}}
if date_str not in summed_data:
summed_data[date_str] = {'CALL': {'volume': 0, 'open_interest': 0}, 'PUT': {'volume': 0, 'open_interest': 0}, 'iv60': None}
summed_data[entry['date']][put_call]['volume'] += volume
summed_data[entry['date']][put_call]['open_interest'] += open_interest
result_list = [{'date': date, 'CALL': summed_data[date]['CALL'], 'PUT': summed_data[date]['PUT']} for date in summed_data]
#reverse the list
summed_data[date_str][put_call]['volume'] += volume
summed_data[date_str][put_call]['open_interest'] += open_interest
if date_str in iv60_dict:
summed_data[date_str]['iv60'] = round(iv60_dict[date_str]*100,1)
result_list.extend([{'date': date, 'CALL': summed_data[date]['CALL'], 'PUT': summed_data[date]['PUT'], 'iv60': summed_data[date]['iv60']} for date in summed_data])
# Reverse the list
result_list = result_list[::-1]
with open(f"json/options-flow/company/{ticker}.json", 'w') as file:
ujson.dump(result_list, file)
except:
except Exception as e:
print(e)
pass
#Save bubble data for each ticker for overview page
for ticker in chunk:
@ -139,7 +231,7 @@ async def main():
chunk_size = len(total_symbols) // 2000 # Divide the list into N chunks
chunks = [total_symbols[i:i + chunk_size] for i in range(0, len(total_symbols), chunk_size)]
#chunks = [['NVDA']]
loop = asyncio.get_running_loop()
with ThreadPoolExecutor(max_workers=4) as executor:
tasks = [loop.run_in_executor(executor, options_bubble_data, chunk) for chunk in chunks]