add implied volatiltiy
This commit is contained in:
parent
c280d40167
commit
1df37cf81a
@ -7,6 +7,13 @@ from dotenv import load_dotenv
|
||||
from benzinga import financial_data
|
||||
from tqdm import tqdm
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import pandas as pd
|
||||
import math
|
||||
from scipy.stats import norm
|
||||
from scipy.optimize import brentq
|
||||
|
||||
|
||||
|
||||
|
||||
load_dotenv()
|
||||
api_key = os.getenv('BENZINGA_API_KEY')
|
||||
@ -14,6 +21,28 @@ api_key = os.getenv('BENZINGA_API_KEY')
|
||||
fin = financial_data.Benzinga(api_key)
|
||||
|
||||
|
||||
risk_free_rate = 0.05
|
||||
|
||||
def black_scholes_price(S, K, T, r, sigma, option_type="CALL"):
|
||||
d1 = (math.log(S / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * math.sqrt(T))
|
||||
d2 = d1 - sigma * math.sqrt(T)
|
||||
if option_type == "CALL":
|
||||
return S * norm.cdf(d1) - K * math.exp(-r * T) * norm.cdf(d2)
|
||||
elif option_type == "PUT":
|
||||
return K * math.exp(-r * T) * norm.cdf(-d2) - S * norm.cdf(-d1)
|
||||
|
||||
# Implied volatility function
|
||||
def implied_volatility(S, K, T, r, market_price, option_type="CALL"):
|
||||
def objective_function(sigma):
|
||||
return black_scholes_price(S, K, T, r, sigma, option_type) - market_price
|
||||
|
||||
# Use brentq to solve for the implied volatility
|
||||
try:
|
||||
return brentq(objective_function, 1e-6, 3) # Bounds for volatility
|
||||
except ValueError:
|
||||
return None # Return None if there's no solution
|
||||
|
||||
|
||||
def calculate_dte(date_expiration):
|
||||
expiration_date = datetime.strptime(date_expiration, "%Y-%m-%d")
|
||||
return (expiration_date - datetime.today()).days
|
||||
@ -52,7 +81,60 @@ def options_bubble_data(chunk):
|
||||
except:
|
||||
break
|
||||
|
||||
res_filtered = [{key: value for key, value in item.items() if key in ['ticker','date', 'date_expiration', 'put_call', 'volume', 'open_interest']} for item in res_list]
|
||||
res_filtered = [{key: value for key, value in item.items() if key in ['ticker','underlying_price','strike_price','price','date', 'date_expiration', 'put_call', 'volume', 'open_interest']} for item in res_list]
|
||||
|
||||
#================Start computing historical iv60=====================#
|
||||
# Convert to DataFrame for easier manipulation
|
||||
df = pd.DataFrame(res_filtered)
|
||||
|
||||
# Ensure correct types for dates and numerical fields
|
||||
df['date'] = pd.to_datetime(df['date'])
|
||||
df['date_expiration'] = pd.to_datetime(df['date_expiration'])
|
||||
df['underlying_price'] = pd.to_numeric(df['underlying_price'], errors='coerce')
|
||||
df['strike_price'] = pd.to_numeric(df['strike_price'], errors='coerce')
|
||||
df['price'] = pd.to_numeric(df['price'], errors='coerce')
|
||||
df['volume'] = pd.to_numeric(df['volume'], errors='coerce')
|
||||
df['open_interest'] = pd.to_numeric(df['open_interest'], errors='coerce')
|
||||
|
||||
df['days_to_expiration'] = (df['date_expiration'] - df['date']).dt.days
|
||||
df_30d = df[(df['days_to_expiration'] >= 40) & (df['days_to_expiration'] <= 80)]
|
||||
# Calculate implied volatility for options in the 30-day range
|
||||
iv_data = []
|
||||
for _, option in df_30d.iterrows():
|
||||
S = option['underlying_price']
|
||||
K = option['strike_price']
|
||||
T = option['days_to_expiration'] / 365
|
||||
market_price = option['price']
|
||||
option_type = "CALL" if option['put_call'] == "CALL" else "PUT"
|
||||
|
||||
# Check for missing values
|
||||
if pd.notna(S) and pd.notna(K) and pd.notna(T) and pd.notna(market_price):
|
||||
# Calculate IV
|
||||
iv = implied_volatility(S, K, T, risk_free_rate, market_price, option_type)
|
||||
if iv is not None:
|
||||
iv_data.append({
|
||||
"date": option['date'],
|
||||
"IV": iv,
|
||||
"volume": option['volume']
|
||||
})
|
||||
|
||||
# Create a DataFrame with the calculated IV data
|
||||
iv_df = pd.DataFrame(iv_data)
|
||||
|
||||
# Calculate daily IV60 by averaging IVs (weighted by volume)
|
||||
def calculate_daily_iv60(group):
|
||||
weighted_iv = (group["IV"] * group["volume"]).sum() / group["volume"].sum()
|
||||
return weighted_iv
|
||||
|
||||
# Group by date and compute daily IV60
|
||||
iv60_history = iv_df.groupby("date").apply(calculate_daily_iv60)
|
||||
|
||||
# Fill NaN values using forward fill to carry the last valid IV60 forward
|
||||
iv60_history = iv60_history.ffill()
|
||||
iv60_history = iv60_history.to_dict()
|
||||
iv60_dict = {k.strftime('%Y-%m-%d'): v for k, v in iv60_history.items()}
|
||||
#print(iv60_dict)
|
||||
#====================================================================#
|
||||
|
||||
for option_type in ['CALL', 'PUT']:
|
||||
for item in res_filtered:
|
||||
@ -65,31 +147,41 @@ def options_bubble_data(chunk):
|
||||
pass
|
||||
|
||||
#Save raw data for each ticker for options page stack bar chart
|
||||
result_list = []
|
||||
for ticker in chunk:
|
||||
try:
|
||||
ticker_filtered_data = [entry for entry in res_filtered if entry['ticker'] == ticker]
|
||||
if len(ticker_filtered_data) != 0:
|
||||
#sum up calls and puts for each day for the plot
|
||||
# Sum up calls and puts for each day for the plot
|
||||
summed_data = {}
|
||||
for entry in ticker_filtered_data:
|
||||
volume = int(entry['volume'])
|
||||
open_interest = int(entry['open_interest'])
|
||||
put_call = entry['put_call']
|
||||
date_str = entry['date']
|
||||
|
||||
if entry['date'] not in summed_data:
|
||||
summed_data[entry['date']] = {'CALL': {'volume': 0, 'open_interest': 0}, 'PUT': {'volume': 0, 'open_interest': 0}}
|
||||
if date_str not in summed_data:
|
||||
summed_data[date_str] = {'CALL': {'volume': 0, 'open_interest': 0}, 'PUT': {'volume': 0, 'open_interest': 0}, 'iv60': None}
|
||||
|
||||
summed_data[entry['date']][put_call]['volume'] += volume
|
||||
summed_data[entry['date']][put_call]['open_interest'] += open_interest
|
||||
|
||||
result_list = [{'date': date, 'CALL': summed_data[date]['CALL'], 'PUT': summed_data[date]['PUT']} for date in summed_data]
|
||||
#reverse the list
|
||||
summed_data[date_str][put_call]['volume'] += volume
|
||||
summed_data[date_str][put_call]['open_interest'] += open_interest
|
||||
|
||||
if date_str in iv60_dict:
|
||||
summed_data[date_str]['iv60'] = round(iv60_dict[date_str]*100,1)
|
||||
|
||||
result_list.extend([{'date': date, 'CALL': summed_data[date]['CALL'], 'PUT': summed_data[date]['PUT'], 'iv60': summed_data[date]['iv60']} for date in summed_data])
|
||||
|
||||
# Reverse the list
|
||||
result_list = result_list[::-1]
|
||||
|
||||
with open(f"json/options-flow/company/{ticker}.json", 'w') as file:
|
||||
ujson.dump(result_list, file)
|
||||
except:
|
||||
except Exception as e:
|
||||
print(e)
|
||||
pass
|
||||
|
||||
|
||||
|
||||
#Save bubble data for each ticker for overview page
|
||||
for ticker in chunk:
|
||||
|
||||
@ -139,7 +231,7 @@ async def main():
|
||||
|
||||
chunk_size = len(total_symbols) // 2000 # Divide the list into N chunks
|
||||
chunks = [total_symbols[i:i + chunk_size] for i in range(0, len(total_symbols), chunk_size)]
|
||||
|
||||
#chunks = [['NVDA']]
|
||||
loop = asyncio.get_running_loop()
|
||||
with ThreadPoolExecutor(max_workers=4) as executor:
|
||||
tasks = [loop.run_in_executor(executor, options_bubble_data, chunk) for chunk in chunks]
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user