add ticker flow

This commit is contained in:
MuslemRahimi 2025-02-16 18:54:43 +01:00
parent 7cf63dd536
commit 3282315d7e
3 changed files with 172 additions and 128 deletions

View File

@ -68,130 +68,6 @@ async def get_stock_chart_data(ticker):
def get_market_tide(interval_1m=True):
res_list = []
# Load the options flow JSON data only once.
with open("json/options-flow/feed/data.json", "r") as file:
all_data = orjson.loads(file.read())
# We're processing SPY (the market tide) if needed you could expand this list.
tickers = ['SPY']
# Use a single dictionary to track cumulative flows.
delta_data = defaultdict(lambda: {
'cumulative_net_call_premium': 0,
'cumulative_net_put_premium': 0,
'call_ask_vol': 0,
'call_bid_vol': 0,
'put_ask_vol': 0,
'put_bid_vol': 0
})
# Process each ticker.
for ticker in tqdm(tickers):
# Filter and sort the data for the current ticker.
data = [item for item in all_data if item['ticker'] == ticker]
data.sort(key=lambda x: x['time'])
for item in data:
try:
# Combine date and time, then truncate to the start of the minute.
dt = datetime.strptime(f"{item['date']} {item['time']}", "%Y-%m-%d %H:%M:%S")
dt = dt.replace(second=0, microsecond=0)
if interval_1m:
minute = dt.minute - (dt.minute % 1)
dt = dt.replace(minute=minute)
rounded_ts = dt.strftime("%Y-%m-%d %H:%M:%S")
# Extract metrics.
cost = float(item.get("cost_basis", 0))
sentiment = item.get("sentiment", "")
put_call = item.get("put_call", "")
vol = int(item.get("volume", 0))
# Update premium and volume metrics.
if put_call == "Calls":
if sentiment == "Bullish":
delta_data[rounded_ts]['cumulative_net_call_premium'] += cost
delta_data[rounded_ts]['call_ask_vol'] += vol
elif sentiment == "Bearish":
delta_data[rounded_ts]['cumulative_net_call_premium'] -= cost
delta_data[rounded_ts]['call_bid_vol'] += vol
elif put_call == "Puts":
if sentiment == "Bullish":
delta_data[rounded_ts]['cumulative_net_put_premium'] += cost
delta_data[rounded_ts]['put_ask_vol'] += vol
elif sentiment == "Bearish":
delta_data[rounded_ts]['cumulative_net_put_premium'] -= cost
delta_data[rounded_ts]['put_bid_vol'] += vol
except Exception as e:
print(f"Error processing item: {e}")
# Calculate cumulative values over time.
sorted_ts = sorted(delta_data.keys())
cumulative = {
'net_call_premium': 0,
'net_put_premium': 0,
'call_ask': 0,
'call_bid': 0,
'put_ask': 0,
'put_bid': 0
}
for ts in sorted_ts:
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
cumulative['call_bid'] += delta_data[ts]['call_bid_vol']
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
call_volume = cumulative['call_ask'] + cumulative['call_bid']
put_volume = cumulative['put_ask'] + cumulative['put_bid']
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - (cumulative['put_ask'] - cumulative['put_bid'])
res_list.append({
'time': ts,
'ticker': ticker,
'net_call_premium': round(cumulative['net_call_premium']),
'net_put_premium': round(cumulative['net_put_premium']),
'call_volume': round(call_volume),
'put_volume': round(put_volume),
'net_volume': round(net_volume),
})
# Sort the results list by time.
res_list.sort(key=lambda x: x['time'])
# Retrieve SPY price list data (using asyncio or fallback to local file).
price_list = asyncio.run(get_stock_chart_data('SPY'))
if len(price_list) == 0:
with open("json/one-day-price/SPY.json", "r") as file:
price_list = orjson.loads(file.read())
# Append closing prices to the market tide data.
data_with_close = add_close_to_data(price_list, res_list)
# Ensure that every minute until 16:05 is present in the data.
fields = ['net_call_premium', 'net_put_premium', 'call_volume', 'put_volume', 'net_volume', 'close']
last_time = datetime.strptime(data_with_close[-1]['time'], "%Y-%m-%d %H:%M:%S")
end_time = last_time.replace(hour=16, minute=5, second=0)
while last_time < end_time:
last_time += timedelta(minutes=1)
data_with_close.append({
'time': last_time.strftime("%Y-%m-%d %H:%M:%S"),
'ticker': 'SPY',
**{field: None for field in fields}
})
return data_with_close
def get_sector_data(sector_ticker,interval_1m=True): def get_sector_data(sector_ticker,interval_1m=True):
res_list = [] res_list = []
@ -358,7 +234,7 @@ def get_top_tickers(sector_ticker):
def get_market_flow(): def get_market_flow():
market_tide = get_sector_data(sector_ticker="SPY") #get_market_tide() market_tide = get_sector_data(sector_ticker="SPY")
top_pos_tickers = get_top_tickers(sector_ticker="SPY") top_pos_tickers = get_top_tickers(sector_ticker="SPY")
top_neg_tickers = sorted(get_top_tickers(sector_ticker="SPY"), key=lambda item: item['net_premium']) top_neg_tickers = sorted(get_top_tickers(sector_ticker="SPY"), key=lambda item: item['net_premium'])
for rank, item in enumerate(top_neg_tickers, 1): for rank, item in enumerate(top_neg_tickers, 1):

View File

@ -9,6 +9,7 @@ from dotenv import load_dotenv
import os import os
import re import re
from statistics import mean from statistics import mean
from collections import defaultdict
# Database connection and symbol retrieval # Database connection and symbol retrieval
@ -29,8 +30,7 @@ def get_total_symbols():
return stocks_symbols + etf_symbols +index_symbols return stocks_symbols + etf_symbols +index_symbols
def save_json(data, symbol): def save_json(data, symbol, directory):
directory = "json/options-stats/companies"
os.makedirs(directory, exist_ok=True) os.makedirs(directory, exist_ok=True)
with open(f"{directory}/{symbol}.json", 'wb') as file: with open(f"{directory}/{symbol}.json", 'wb') as file:
file.write(orjson.dumps(data)) file.write(orjson.dumps(data))
@ -42,6 +42,134 @@ def safe_round(value):
except (ValueError, TypeError): except (ValueError, TypeError):
return value return value
def add_close_to_data(price_list, data):
for entry in data:
formatted_time = entry['time']
# Match with price_list
for price in price_list:
if price['time'] == formatted_time:
entry['close'] = price['close']
break # Match found, no need to continue searching
return data
def get_market_flow_data(ticker,interval_1m=True):
res_list = []
# Load the options flow data.
with open("json/options-flow/feed/data.json", "r") as file:
all_data = orjson.loads(file.read())
# Load ETF holdings data and extract ticker weights.
# Use a common dictionary to accumulate flows across all tickers.
delta_data = defaultdict(lambda: {
'cumulative_net_call_premium': 0,
'cumulative_net_put_premium': 0,
'call_ask_vol': 0,
'call_bid_vol': 0,
'put_ask_vol': 0,
'put_bid_vol': 0
})
# Process each ticker's data using its weight.
# Convert the weight percentage to a fraction.
weight = 1 #ticker_weights[ticker] / 100.0 #ignore weights of sector
# Filter data for the current ticker.
ticker_data = [item for item in all_data if item.get('ticker') == ticker]
ticker_data.sort(key=lambda x: x['time'])
for item in ticker_data:
try:
# Combine date and time, then truncate seconds and microseconds.
dt = datetime.strptime(f"{item['date']} {item['time']}", "%Y-%m-%d %H:%M:%S")
dt = dt.replace(second=0, microsecond=0)
# Adjust to the start of the minute if using 1-minute intervals.
if interval_1m:
minute = dt.minute - (dt.minute % 1)
dt = dt.replace(minute=minute)
rounded_ts = dt.strftime("%Y-%m-%d %H:%M:%S")
# Extract metrics.
cost = float(item.get("cost_basis", 0))
sentiment = item.get("sentiment", "")
put_call = item.get("put_call", "")
vol = int(item.get("volume", 0))
# Update metrics, scaled by the ticker's weight.
if put_call == "Calls":
if sentiment == "Bullish":
delta_data[rounded_ts]['cumulative_net_call_premium'] += cost
delta_data[rounded_ts]['call_ask_vol'] += vol
elif sentiment == "Bearish":
delta_data[rounded_ts]['cumulative_net_call_premium'] -= cost
delta_data[rounded_ts]['call_bid_vol'] += vol
elif put_call == "Puts":
if sentiment == "Bullish":
delta_data[rounded_ts]['cumulative_net_put_premium'] += cost
delta_data[rounded_ts]['put_ask_vol'] += vol
elif sentiment == "Bearish":
delta_data[rounded_ts]['cumulative_net_put_premium'] -= cost
delta_data[rounded_ts]['put_bid_vol'] += vol
except Exception as e:
print(f"Error processing item: {e}")
# Calculate cumulative values over time.
sorted_ts = sorted(delta_data.keys())
cumulative = {
'net_call_premium': 0,
'net_put_premium': 0,
'call_ask': 0,
'call_bid': 0,
'put_ask': 0,
'put_bid': 0
}
for ts in sorted_ts:
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
cumulative['call_bid'] += delta_data[ts]['call_bid_vol']
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
call_volume = cumulative['call_ask'] + cumulative['call_bid']
put_volume = cumulative['put_ask'] + cumulative['put_bid']
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - (cumulative['put_ask'] - cumulative['put_bid'])
res_list.append({
'time': ts,
'net_call_premium': round(cumulative['net_call_premium']),
'net_put_premium': round(cumulative['net_put_premium']),
'call_volume': round(call_volume),
'put_volume': round(put_volume),
'net_volume': round(net_volume),
})
# Sort the results list by time.
res_list.sort(key=lambda x: x['time'])
# Get the price list for the sector ticker.
with open(f"json/one-day-price/{ticker}.json", "r") as file:
price_list = orjson.loads(file.read())
# Append closing prices to the data.
data = add_close_to_data(price_list, res_list)
fields = ['net_call_premium', 'net_put_premium', 'call_volume', 'put_volume', 'net_volume', 'close']
last_time = datetime.strptime(data[-1]['time'], "%Y-%m-%d %H:%M:%S")
end_time = last_time.replace(hour=16, minute=0, second=0)
while last_time < end_time:
last_time += timedelta(minutes=1)
data.append({
'time': last_time.strftime("%Y-%m-%d %H:%M:%S"),
**{field: None for field in fields}
})
return data
async def main(): async def main():
@ -52,6 +180,7 @@ async def main():
for symbol in tqdm(total_symbols): for symbol in tqdm(total_symbols):
try: try:
#Start of daily stats
call_premium = 0 call_premium = 0
put_premium = 0 put_premium = 0
call_open_interest = 0 call_open_interest = 0
@ -131,13 +260,21 @@ async def main():
} }
if aggregate: if aggregate:
save_json(aggregate, symbol) save_json(aggregate, symbol,"json/options-stats/companies")
else: else:
os.remove(f"json/options-stats/companies/{symbol}.json") os.remove(f"json/options-stats/companies/{symbol}.json")
#End of daily stats
flow_data = get_market_flow_data(symbol)
if flow_data:
save_json(flow_data, symbol,"json/market-flow/companies")
else:
os.remove(f"json/market-flow/companies/{symbol}.json")
except: except:
try: try:
os.remove(f"json/options-stats/companies/{symbol}.json") os.remove(f"json/options-stats/companies/{symbol}.json")
os.remove(f"json/market-flow/companies/{symbol}.json")
except: except:
pass pass

View File

@ -4087,6 +4087,37 @@ async def get_data(api_key: str = Security(get_api_key)):
headers={"Content-Encoding": "gzip"} headers={"Content-Encoding": "gzip"}
) )
@app.post("/ticker-flow")
async def get_data(data:TickerData, api_key: str = Security(get_api_key)):
ticker = data.ticker.upper()
cache_key = f"ticker-flow-{ticker}"
cached_result = redis_client.get(cache_key)
if cached_result:
return StreamingResponse(
io.BytesIO(cached_result),
media_type="application/json",
headers={"Content-Encoding": "gzip"}
)
try:
with open(f"json/market-flow/companies/{ticker}.json", 'rb') as file:
res = orjson.loads(file.read())
except:
res = []
data = orjson.dumps(res)
compressed_data = gzip.compress(data)
redis_client.set(cache_key, compressed_data)
redis_client.expire(cache_key,2*60)
return StreamingResponse(
io.BytesIO(compressed_data),
media_type="application/json",
headers={"Content-Encoding": "gzip"}
)
@app.get("/potus-tracker") @app.get("/potus-tracker")
async def get_data(api_key: str = Security(get_api_key)): async def get_data(api_key: str = Security(get_api_key)):
cache_key = f"potus-tracker" cache_key = f"potus-tracker"