add ticker flow
This commit is contained in:
parent
7cf63dd536
commit
3282315d7e
@ -68,130 +68,6 @@ async def get_stock_chart_data(ticker):
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
def get_market_tide(interval_1m=True):
|
|
||||||
res_list = []
|
|
||||||
|
|
||||||
# Load the options flow JSON data only once.
|
|
||||||
with open("json/options-flow/feed/data.json", "r") as file:
|
|
||||||
all_data = orjson.loads(file.read())
|
|
||||||
|
|
||||||
# We're processing SPY (the market tide) – if needed you could expand this list.
|
|
||||||
tickers = ['SPY']
|
|
||||||
|
|
||||||
# Use a single dictionary to track cumulative flows.
|
|
||||||
delta_data = defaultdict(lambda: {
|
|
||||||
'cumulative_net_call_premium': 0,
|
|
||||||
'cumulative_net_put_premium': 0,
|
|
||||||
'call_ask_vol': 0,
|
|
||||||
'call_bid_vol': 0,
|
|
||||||
'put_ask_vol': 0,
|
|
||||||
'put_bid_vol': 0
|
|
||||||
})
|
|
||||||
|
|
||||||
# Process each ticker.
|
|
||||||
for ticker in tqdm(tickers):
|
|
||||||
# Filter and sort the data for the current ticker.
|
|
||||||
data = [item for item in all_data if item['ticker'] == ticker]
|
|
||||||
data.sort(key=lambda x: x['time'])
|
|
||||||
for item in data:
|
|
||||||
try:
|
|
||||||
# Combine date and time, then truncate to the start of the minute.
|
|
||||||
dt = datetime.strptime(f"{item['date']} {item['time']}", "%Y-%m-%d %H:%M:%S")
|
|
||||||
dt = dt.replace(second=0, microsecond=0)
|
|
||||||
|
|
||||||
if interval_1m:
|
|
||||||
minute = dt.minute - (dt.minute % 1)
|
|
||||||
dt = dt.replace(minute=minute)
|
|
||||||
|
|
||||||
rounded_ts = dt.strftime("%Y-%m-%d %H:%M:%S")
|
|
||||||
|
|
||||||
# Extract metrics.
|
|
||||||
cost = float(item.get("cost_basis", 0))
|
|
||||||
sentiment = item.get("sentiment", "")
|
|
||||||
put_call = item.get("put_call", "")
|
|
||||||
vol = int(item.get("volume", 0))
|
|
||||||
|
|
||||||
# Update premium and volume metrics.
|
|
||||||
if put_call == "Calls":
|
|
||||||
if sentiment == "Bullish":
|
|
||||||
delta_data[rounded_ts]['cumulative_net_call_premium'] += cost
|
|
||||||
delta_data[rounded_ts]['call_ask_vol'] += vol
|
|
||||||
elif sentiment == "Bearish":
|
|
||||||
delta_data[rounded_ts]['cumulative_net_call_premium'] -= cost
|
|
||||||
delta_data[rounded_ts]['call_bid_vol'] += vol
|
|
||||||
elif put_call == "Puts":
|
|
||||||
if sentiment == "Bullish":
|
|
||||||
delta_data[rounded_ts]['cumulative_net_put_premium'] += cost
|
|
||||||
delta_data[rounded_ts]['put_ask_vol'] += vol
|
|
||||||
elif sentiment == "Bearish":
|
|
||||||
delta_data[rounded_ts]['cumulative_net_put_premium'] -= cost
|
|
||||||
delta_data[rounded_ts]['put_bid_vol'] += vol
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Error processing item: {e}")
|
|
||||||
|
|
||||||
# Calculate cumulative values over time.
|
|
||||||
sorted_ts = sorted(delta_data.keys())
|
|
||||||
cumulative = {
|
|
||||||
'net_call_premium': 0,
|
|
||||||
'net_put_premium': 0,
|
|
||||||
'call_ask': 0,
|
|
||||||
'call_bid': 0,
|
|
||||||
'put_ask': 0,
|
|
||||||
'put_bid': 0
|
|
||||||
}
|
|
||||||
|
|
||||||
for ts in sorted_ts:
|
|
||||||
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
|
|
||||||
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
|
|
||||||
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
|
|
||||||
cumulative['call_bid'] += delta_data[ts]['call_bid_vol']
|
|
||||||
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
|
|
||||||
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
|
|
||||||
|
|
||||||
call_volume = cumulative['call_ask'] + cumulative['call_bid']
|
|
||||||
put_volume = cumulative['put_ask'] + cumulative['put_bid']
|
|
||||||
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - (cumulative['put_ask'] - cumulative['put_bid'])
|
|
||||||
|
|
||||||
res_list.append({
|
|
||||||
'time': ts,
|
|
||||||
'ticker': ticker,
|
|
||||||
'net_call_premium': round(cumulative['net_call_premium']),
|
|
||||||
'net_put_premium': round(cumulative['net_put_premium']),
|
|
||||||
'call_volume': round(call_volume),
|
|
||||||
'put_volume': round(put_volume),
|
|
||||||
'net_volume': round(net_volume),
|
|
||||||
})
|
|
||||||
|
|
||||||
# Sort the results list by time.
|
|
||||||
res_list.sort(key=lambda x: x['time'])
|
|
||||||
|
|
||||||
# Retrieve SPY price list data (using asyncio or fallback to local file).
|
|
||||||
price_list = asyncio.run(get_stock_chart_data('SPY'))
|
|
||||||
if len(price_list) == 0:
|
|
||||||
with open("json/one-day-price/SPY.json", "r") as file:
|
|
||||||
price_list = orjson.loads(file.read())
|
|
||||||
|
|
||||||
# Append closing prices to the market tide data.
|
|
||||||
data_with_close = add_close_to_data(price_list, res_list)
|
|
||||||
|
|
||||||
# Ensure that every minute until 16:05 is present in the data.
|
|
||||||
fields = ['net_call_premium', 'net_put_premium', 'call_volume', 'put_volume', 'net_volume', 'close']
|
|
||||||
last_time = datetime.strptime(data_with_close[-1]['time'], "%Y-%m-%d %H:%M:%S")
|
|
||||||
end_time = last_time.replace(hour=16, minute=5, second=0)
|
|
||||||
|
|
||||||
while last_time < end_time:
|
|
||||||
last_time += timedelta(minutes=1)
|
|
||||||
data_with_close.append({
|
|
||||||
'time': last_time.strftime("%Y-%m-%d %H:%M:%S"),
|
|
||||||
'ticker': 'SPY',
|
|
||||||
**{field: None for field in fields}
|
|
||||||
})
|
|
||||||
|
|
||||||
return data_with_close
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def get_sector_data(sector_ticker,interval_1m=True):
|
def get_sector_data(sector_ticker,interval_1m=True):
|
||||||
res_list = []
|
res_list = []
|
||||||
|
|
||||||
@ -358,7 +234,7 @@ def get_top_tickers(sector_ticker):
|
|||||||
|
|
||||||
|
|
||||||
def get_market_flow():
|
def get_market_flow():
|
||||||
market_tide = get_sector_data(sector_ticker="SPY") #get_market_tide()
|
market_tide = get_sector_data(sector_ticker="SPY")
|
||||||
top_pos_tickers = get_top_tickers(sector_ticker="SPY")
|
top_pos_tickers = get_top_tickers(sector_ticker="SPY")
|
||||||
top_neg_tickers = sorted(get_top_tickers(sector_ticker="SPY"), key=lambda item: item['net_premium'])
|
top_neg_tickers = sorted(get_top_tickers(sector_ticker="SPY"), key=lambda item: item['net_premium'])
|
||||||
for rank, item in enumerate(top_neg_tickers, 1):
|
for rank, item in enumerate(top_neg_tickers, 1):
|
||||||
|
|||||||
@ -9,6 +9,7 @@ from dotenv import load_dotenv
|
|||||||
import os
|
import os
|
||||||
import re
|
import re
|
||||||
from statistics import mean
|
from statistics import mean
|
||||||
|
from collections import defaultdict
|
||||||
|
|
||||||
|
|
||||||
# Database connection and symbol retrieval
|
# Database connection and symbol retrieval
|
||||||
@ -29,8 +30,7 @@ def get_total_symbols():
|
|||||||
return stocks_symbols + etf_symbols +index_symbols
|
return stocks_symbols + etf_symbols +index_symbols
|
||||||
|
|
||||||
|
|
||||||
def save_json(data, symbol):
|
def save_json(data, symbol, directory):
|
||||||
directory = "json/options-stats/companies"
|
|
||||||
os.makedirs(directory, exist_ok=True)
|
os.makedirs(directory, exist_ok=True)
|
||||||
with open(f"{directory}/{symbol}.json", 'wb') as file:
|
with open(f"{directory}/{symbol}.json", 'wb') as file:
|
||||||
file.write(orjson.dumps(data))
|
file.write(orjson.dumps(data))
|
||||||
@ -42,6 +42,134 @@ def safe_round(value):
|
|||||||
except (ValueError, TypeError):
|
except (ValueError, TypeError):
|
||||||
return value
|
return value
|
||||||
|
|
||||||
|
def add_close_to_data(price_list, data):
|
||||||
|
for entry in data:
|
||||||
|
formatted_time = entry['time']
|
||||||
|
# Match with price_list
|
||||||
|
for price in price_list:
|
||||||
|
if price['time'] == formatted_time:
|
||||||
|
entry['close'] = price['close']
|
||||||
|
break # Match found, no need to continue searching
|
||||||
|
return data
|
||||||
|
|
||||||
|
|
||||||
|
def get_market_flow_data(ticker,interval_1m=True):
|
||||||
|
res_list = []
|
||||||
|
|
||||||
|
# Load the options flow data.
|
||||||
|
with open("json/options-flow/feed/data.json", "r") as file:
|
||||||
|
all_data = orjson.loads(file.read())
|
||||||
|
|
||||||
|
# Load ETF holdings data and extract ticker weights.
|
||||||
|
# Use a common dictionary to accumulate flows across all tickers.
|
||||||
|
delta_data = defaultdict(lambda: {
|
||||||
|
'cumulative_net_call_premium': 0,
|
||||||
|
'cumulative_net_put_premium': 0,
|
||||||
|
'call_ask_vol': 0,
|
||||||
|
'call_bid_vol': 0,
|
||||||
|
'put_ask_vol': 0,
|
||||||
|
'put_bid_vol': 0
|
||||||
|
})
|
||||||
|
|
||||||
|
# Process each ticker's data using its weight.
|
||||||
|
# Convert the weight percentage to a fraction.
|
||||||
|
weight = 1 #ticker_weights[ticker] / 100.0 #ignore weights of sector
|
||||||
|
# Filter data for the current ticker.
|
||||||
|
ticker_data = [item for item in all_data if item.get('ticker') == ticker]
|
||||||
|
ticker_data.sort(key=lambda x: x['time'])
|
||||||
|
|
||||||
|
for item in ticker_data:
|
||||||
|
try:
|
||||||
|
# Combine date and time, then truncate seconds and microseconds.
|
||||||
|
dt = datetime.strptime(f"{item['date']} {item['time']}", "%Y-%m-%d %H:%M:%S")
|
||||||
|
dt = dt.replace(second=0, microsecond=0)
|
||||||
|
|
||||||
|
# Adjust to the start of the minute if using 1-minute intervals.
|
||||||
|
if interval_1m:
|
||||||
|
minute = dt.minute - (dt.minute % 1)
|
||||||
|
dt = dt.replace(minute=minute)
|
||||||
|
|
||||||
|
rounded_ts = dt.strftime("%Y-%m-%d %H:%M:%S")
|
||||||
|
|
||||||
|
# Extract metrics.
|
||||||
|
cost = float(item.get("cost_basis", 0))
|
||||||
|
sentiment = item.get("sentiment", "")
|
||||||
|
put_call = item.get("put_call", "")
|
||||||
|
vol = int(item.get("volume", 0))
|
||||||
|
|
||||||
|
# Update metrics, scaled by the ticker's weight.
|
||||||
|
if put_call == "Calls":
|
||||||
|
if sentiment == "Bullish":
|
||||||
|
delta_data[rounded_ts]['cumulative_net_call_premium'] += cost
|
||||||
|
delta_data[rounded_ts]['call_ask_vol'] += vol
|
||||||
|
elif sentiment == "Bearish":
|
||||||
|
delta_data[rounded_ts]['cumulative_net_call_premium'] -= cost
|
||||||
|
delta_data[rounded_ts]['call_bid_vol'] += vol
|
||||||
|
elif put_call == "Puts":
|
||||||
|
if sentiment == "Bullish":
|
||||||
|
delta_data[rounded_ts]['cumulative_net_put_premium'] += cost
|
||||||
|
delta_data[rounded_ts]['put_ask_vol'] += vol
|
||||||
|
elif sentiment == "Bearish":
|
||||||
|
delta_data[rounded_ts]['cumulative_net_put_premium'] -= cost
|
||||||
|
delta_data[rounded_ts]['put_bid_vol'] += vol
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error processing item: {e}")
|
||||||
|
|
||||||
|
# Calculate cumulative values over time.
|
||||||
|
sorted_ts = sorted(delta_data.keys())
|
||||||
|
cumulative = {
|
||||||
|
'net_call_premium': 0,
|
||||||
|
'net_put_premium': 0,
|
||||||
|
'call_ask': 0,
|
||||||
|
'call_bid': 0,
|
||||||
|
'put_ask': 0,
|
||||||
|
'put_bid': 0
|
||||||
|
}
|
||||||
|
|
||||||
|
for ts in sorted_ts:
|
||||||
|
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
|
||||||
|
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
|
||||||
|
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
|
||||||
|
cumulative['call_bid'] += delta_data[ts]['call_bid_vol']
|
||||||
|
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
|
||||||
|
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
|
||||||
|
|
||||||
|
call_volume = cumulative['call_ask'] + cumulative['call_bid']
|
||||||
|
put_volume = cumulative['put_ask'] + cumulative['put_bid']
|
||||||
|
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - (cumulative['put_ask'] - cumulative['put_bid'])
|
||||||
|
|
||||||
|
res_list.append({
|
||||||
|
'time': ts,
|
||||||
|
'net_call_premium': round(cumulative['net_call_premium']),
|
||||||
|
'net_put_premium': round(cumulative['net_put_premium']),
|
||||||
|
'call_volume': round(call_volume),
|
||||||
|
'put_volume': round(put_volume),
|
||||||
|
'net_volume': round(net_volume),
|
||||||
|
})
|
||||||
|
|
||||||
|
# Sort the results list by time.
|
||||||
|
res_list.sort(key=lambda x: x['time'])
|
||||||
|
|
||||||
|
# Get the price list for the sector ticker.
|
||||||
|
with open(f"json/one-day-price/{ticker}.json", "r") as file:
|
||||||
|
price_list = orjson.loads(file.read())
|
||||||
|
|
||||||
|
# Append closing prices to the data.
|
||||||
|
data = add_close_to_data(price_list, res_list)
|
||||||
|
fields = ['net_call_premium', 'net_put_premium', 'call_volume', 'put_volume', 'net_volume', 'close']
|
||||||
|
last_time = datetime.strptime(data[-1]['time'], "%Y-%m-%d %H:%M:%S")
|
||||||
|
end_time = last_time.replace(hour=16, minute=0, second=0)
|
||||||
|
|
||||||
|
while last_time < end_time:
|
||||||
|
last_time += timedelta(minutes=1)
|
||||||
|
data.append({
|
||||||
|
'time': last_time.strftime("%Y-%m-%d %H:%M:%S"),
|
||||||
|
**{field: None for field in fields}
|
||||||
|
})
|
||||||
|
|
||||||
|
return data
|
||||||
|
|
||||||
|
|
||||||
async def main():
|
async def main():
|
||||||
|
|
||||||
@ -52,6 +180,7 @@ async def main():
|
|||||||
|
|
||||||
for symbol in tqdm(total_symbols):
|
for symbol in tqdm(total_symbols):
|
||||||
try:
|
try:
|
||||||
|
#Start of daily stats
|
||||||
call_premium = 0
|
call_premium = 0
|
||||||
put_premium = 0
|
put_premium = 0
|
||||||
call_open_interest = 0
|
call_open_interest = 0
|
||||||
@ -131,13 +260,21 @@ async def main():
|
|||||||
}
|
}
|
||||||
|
|
||||||
if aggregate:
|
if aggregate:
|
||||||
save_json(aggregate, symbol)
|
save_json(aggregate, symbol,"json/options-stats/companies")
|
||||||
else:
|
else:
|
||||||
os.remove(f"json/options-stats/companies/{symbol}.json")
|
os.remove(f"json/options-stats/companies/{symbol}.json")
|
||||||
|
|
||||||
|
#End of daily stats
|
||||||
|
flow_data = get_market_flow_data(symbol)
|
||||||
|
if flow_data:
|
||||||
|
save_json(flow_data, symbol,"json/market-flow/companies")
|
||||||
|
else:
|
||||||
|
os.remove(f"json/market-flow/companies/{symbol}.json")
|
||||||
|
|
||||||
except:
|
except:
|
||||||
try:
|
try:
|
||||||
os.remove(f"json/options-stats/companies/{symbol}.json")
|
os.remove(f"json/options-stats/companies/{symbol}.json")
|
||||||
|
os.remove(f"json/market-flow/companies/{symbol}.json")
|
||||||
except:
|
except:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|||||||
31
app/main.py
31
app/main.py
@ -4087,6 +4087,37 @@ async def get_data(api_key: str = Security(get_api_key)):
|
|||||||
headers={"Content-Encoding": "gzip"}
|
headers={"Content-Encoding": "gzip"}
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/ticker-flow")
|
||||||
|
async def get_data(data:TickerData, api_key: str = Security(get_api_key)):
|
||||||
|
ticker = data.ticker.upper()
|
||||||
|
cache_key = f"ticker-flow-{ticker}"
|
||||||
|
cached_result = redis_client.get(cache_key)
|
||||||
|
if cached_result:
|
||||||
|
return StreamingResponse(
|
||||||
|
io.BytesIO(cached_result),
|
||||||
|
media_type="application/json",
|
||||||
|
headers={"Content-Encoding": "gzip"}
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
with open(f"json/market-flow/companies/{ticker}.json", 'rb') as file:
|
||||||
|
res = orjson.loads(file.read())
|
||||||
|
except:
|
||||||
|
res = []
|
||||||
|
|
||||||
|
data = orjson.dumps(res)
|
||||||
|
compressed_data = gzip.compress(data)
|
||||||
|
|
||||||
|
redis_client.set(cache_key, compressed_data)
|
||||||
|
redis_client.expire(cache_key,2*60)
|
||||||
|
|
||||||
|
return StreamingResponse(
|
||||||
|
io.BytesIO(compressed_data),
|
||||||
|
media_type="application/json",
|
||||||
|
headers={"Content-Encoding": "gzip"}
|
||||||
|
)
|
||||||
|
|
||||||
@app.get("/potus-tracker")
|
@app.get("/potus-tracker")
|
||||||
async def get_data(api_key: str = Security(get_api_key)):
|
async def get_data(api_key: str = Security(get_api_key)):
|
||||||
cache_key = f"potus-tracker"
|
cache_key = f"potus-tracker"
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user