bugfixing dividends

This commit is contained in:
MuslemRahimi 2025-02-22 12:39:57 +01:00
parent 07278c6c42
commit 3b1063556f

View File

@ -20,7 +20,7 @@ today = datetime.now(ny_tz).replace(hour=0, minute=0, second=0, microsecond=0)
N_days_ago = today - timedelta(days=10)
async def save_as_json(symbol, data,file_name):
async def save_as_json(symbol, data, file_name):
with open(f"{file_name}/{symbol}.json", 'w') as file:
ujson.dump(data, file)
@ -54,32 +54,65 @@ async def get_data(ticker, con, etf_con, stock_symbols, etf_symbols):
df = pd.read_sql_query(query_template, etf_con if table_name == 'etfs' else con, params=(ticker,))
dividend_data = orjson.loads(df[column_name].iloc[0])
res = dividend_data.get('historical', [])
filtered_res = [item for item in res if item['recordDate'] != '' and item['paymentDate'] != '']
# Calculate payout frequency based on dividends recorded in 2023
payout_frequency = sum(1 for item in filtered_res if '2023' in item['recordDate'])
filtered_res = [item for item in res if item['recordDate'] and item['paymentDate']]
# Dynamically compute the current and previous year based on New York timezone
current_year = str(datetime.now(ny_tz).year)
previous_year = str(datetime.now(ny_tz).year - 1)
# Filter records for the current year
current_year_records = [item for item in filtered_res if current_year in item['recordDate']]
dividends_current_year = [float(item['adjDividend']) for item in current_year_records]
# Compute the estimated payout frequency using the intervals between record dates
record_dates = []
for item in current_year_records:
try:
record_date = datetime.strptime(item['recordDate'], '%Y-%m-%d')
record_dates.append(record_date)
except Exception as e:
continue
record_dates.sort()
if len(record_dates) > 1:
total_days = (record_dates[-1] - record_dates[0]).days
intervals = len(record_dates) - 1
average_interval = total_days / intervals if intervals > 0 else None
estimated_frequency = round(365 / average_interval) if average_interval and average_interval > 0 else len(record_dates)
else:
# If there's only one record, assume weekly (52 payments) as a fallback;
# if no record exists, frequency remains 0.
estimated_frequency = 52 if record_dates else 0
# Project the annual dividend using the average dividend amount
if dividends_current_year:
avg_dividend = sum(dividends_current_year) / len(dividends_current_year)
annual_dividend = round(avg_dividend * estimated_frequency, 2)
else:
annual_dividend = 0
# For the previous year, assume the data is complete and sum the dividends
dividends_previous_year = [
float(item['adjDividend'])
for item in filtered_res
if previous_year in item['recordDate']
]
previous_annual_dividend = round(sum(dividends_previous_year), 2) if dividends_previous_year else 0
quote_data = orjson.loads(df['quote'].iloc[0])[0]
eps = quote_data.get('eps')
current_price = quote_data.get('price')
amount = filtered_res[0]['adjDividend'] if filtered_res else 0
annual_dividend = round(amount * payout_frequency, 2)
dividend_yield = round((annual_dividend / current_price) * 100, 2) if current_price else None
payout_ratio = round((1 - (eps - annual_dividend) / eps) * 100, 2) if eps else None
previous_index = next((i for i, item in enumerate(filtered_res) if '2023' in item['recordDate']), None)
# Calculate previousAnnualDividend and dividendGrowth
previous_annual_dividend = (filtered_res[previous_index]['adjDividend'] * payout_frequency) if previous_index is not None else 0
dividend_growth = round(((annual_dividend - previous_annual_dividend) / previous_annual_dividend) * 100, 2) if previous_annual_dividend else None
dividend_growth = (
round(((annual_dividend - previous_annual_dividend) / previous_annual_dividend) * 100, 2)
if previous_annual_dividend else None
)
return {
'payoutFrequency': payout_frequency,
'payoutFrequency': estimated_frequency,
'annualDividend': annual_dividend,
'dividendYield': dividend_yield,
'payoutRatio': payout_ratio,
@ -87,55 +120,11 @@ async def get_data(ticker, con, etf_con, stock_symbols, etf_symbols):
'history': filtered_res,
}
except:
res = {}
return res
async def get_dividends_announcement(session, ticker, stock_symbols):
querystring = {"token": api_key, "parameters[tickers]": ticker}
ny_tz = pytz.timezone('America/New_York')
today = ny_tz.localize(datetime.now())
N_days_ago = today - timedelta(days=30) # Example, adjust as needed
try:
async with session.get(url, params=querystring, headers=headers) as response:
if response.status == 200:
data = ujson.loads(await response.text())['dividends']
recent_dates = [item for item in data if N_days_ago <= ny_tz.localize(datetime.strptime(item["date"], "%Y-%m-%d")) <= today]
if recent_dates:
nearest_recent = min(recent_dates, key=lambda x: datetime.strptime(x["date"], "%Y-%m-%d"))
try:
symbol = nearest_recent['ticker']
dividend = float(nearest_recent['dividend']) if nearest_recent['dividend'] != '' else 0
dividend_prior = float(nearest_recent['dividend_prior']) if nearest_recent['dividend_prior'] != '' else 0
dividend_yield = round(float(nearest_recent['dividend_yield']) * 100, 2) if nearest_recent['dividend_yield'] != '' else 0
ex_dividend_date = nearest_recent['ex_dividend_date'] if nearest_recent['ex_dividend_date'] != '' else 0
payable_date = nearest_recent['payable_date'] if nearest_recent['payable_date'] != '' else 0
record_date = nearest_recent['record_date'] if nearest_recent['record_date'] != '' else 0
if symbol in stock_symbols and dividend != 0 and payable_date != 0 and dividend_prior != 0 and ex_dividend_date != 0 and record_date != 0 and dividend_yield != 0:
res_dict = {
'symbol': symbol,
'date': nearest_recent['date'],
'dividend': dividend,
'dividendPrior': dividend_prior,
'dividendYield': dividend_yield,
'exDividendDate': ex_dividend_date,
'payableDate': payable_date,
'recordDate': record_date,
}
await save_as_json(symbol, res_dict,'json/dividends/announcement')
except Exception as e:
# Log or handle the exception
print(e)
except:
pass
except Exception as e:
print(f"Error processing ticker {ticker}: {e}")
return {}
async def run():
con = sqlite3.connect('stocks.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
@ -152,23 +141,15 @@ async def run():
for ticker in tqdm(total_symbols):
res = await get_data(ticker, con, etf_con, stock_symbols, etf_symbols)
try:
if len(res.get('history')) > 0 and res.get('dividendGrowth') != None:
if len(res.get('history', [])) > 0:
print(res)
await save_as_json(ticker, res, 'json/dividends/companies')
except:
pass
except Exception as e:
print(f"Error saving data for {ticker}: {e}")
con.close()
etf_con.close()
delete_files_in_directory("json/dividends/announcement")
async with aiohttp.ClientSession() as session:
tasks = [get_dividends_announcement(session, symbol, stock_symbols) for symbol in stock_symbols]
for f in tqdm(asyncio.as_completed(tasks), total=len(stock_symbols)):
await f
try:
asyncio.run(run())
except Exception as e: