add historical var

This commit is contained in:
MuslemRahimi 2024-08-27 01:43:51 +02:00
parent 0e475e85e9
commit 4e58058631

View File

@ -1,21 +1,18 @@
import pandas as pd
from datetime import datetime
#import yfinance as yf
import numpy as np
import ujson
import asyncio
import sqlite3
from tqdm import tqdm
async def save_json(symbol, data):
with open(f"json/var/{symbol}.json", 'w') as file:
ujson.dump(data, file)
# Define risk rating scale
def assign_risk_rating(var):
if var >= 25: # This threshold can be adjusted based on your specific criteria
if var >= 25:
return 1
elif var >= 20:
return 2
@ -45,18 +42,7 @@ def compute_var(df):
var = abs(np.percentile(df['Returns'], 100 * (1 - confidence_level)))
var_N_days = round(var * np.sqrt(5)*100,2) # N days
# Assign risk rating
risk_rating = assign_risk_rating(var_N_days)
outlook = 'Neutral'
if risk_rating < 5:
outlook = 'Risky'
elif risk_rating > 5:
outlook = 'Minimum Risk'
return {'rating': risk_rating, 'var': -var_N_days, 'outlook': outlook}
#print(f"The Value at a 95% confidence level is: {var_N_days}%")
#print(f"The risk rating based on the Value at Risk is: {risk_rating}")
return -var_N_days #{'rating': risk_rating, 'var': -var_N_days, 'outlook': outlook}
async def run():
start_date = "2015-01-01"
@ -84,11 +70,11 @@ async def run():
total_symbols = stocks_symbols + etf_symbols + crypto_symbols
for symbol in tqdm(total_symbols):
if symbol in etf_symbols: # Fixed variable name from symbols to symbol
if symbol in etf_symbols:
query_con = etf_con
elif symbol in crypto_symbols: # Fixed variable name from symbols to symbol
elif symbol in crypto_symbols:
query_con = crypto_con
elif symbol in stocks_symbols: # Fixed variable name from symbols to symbol
elif symbol in stocks_symbols:
query_con = con
query_template = """
@ -102,13 +88,30 @@ async def run():
query = query_template.format(symbol=symbol)
df = pd.read_sql_query(query, query_con, params=(start_date, end_date))
# Convert date to datetime
df['date'] = pd.to_datetime(df['date'])
# Group by year and month
monthly_groups = df.groupby(df['date'].dt.to_period('M'))
history = []
try:
res_dict = compute_var(df)
for period, group in monthly_groups:
var_data = compute_var(group)
history.append({'date': str(period), 'var': var_data})
await save_json(symbol, res_dict)
risk_rating = assign_risk_rating(abs(history[-1]['var']))
outlook = 'Neutral'
if risk_rating < 5:
outlook = 'Risky'
elif risk_rating > 5:
outlook = 'Minimum Risk'
res = {'rating': risk_rating, 'history': history, 'outlook': outlook}
await save_json(symbol, res)
except Exception as e:
print(e)
print(f"Error processing {symbol}: {e}")
con.close()
etf_con.close()
@ -118,20 +121,3 @@ try:
asyncio.run(run())
except Exception as e:
print(e)
#Test mode
'''
# Download data
ticker = 'TCON'
start_date = datetime(2015, 1, 1)
end_date = datetime.today()
df = yf.download(ticker, start=start_date, end=end_date, interval="1d")
df = df.reset_index()
df = df[['Date', 'Close']]
# Calculate daily returns
df['Returns'] = df['Close'].pct_change()
df = df.dropna()
'''