update cron job of hedge funds

This commit is contained in:
MuslemRahimi 2024-11-17 23:51:32 +01:00
parent 64c1695a32
commit 525810ad3d

View File

@ -1,10 +1,16 @@
import sqlite3
import os
import ujson
import orjson
import time
from collections import Counter
from tqdm import tqdm
# Load stock screener data
with open(f"json/stock-screener/data.json", 'rb') as file:
stock_screener_data = orjson.loads(file.read())
stock_screener_data_dict = {item['symbol']: item for item in stock_screener_data}
keys_to_keep = [
"type", "securityName", "symbol", "weight",
"changeInSharesNumberPercentage", "sharesNumber",
@ -44,7 +50,7 @@ def all_hedge_funds(con):
res_list = [{
'cik': row[0],
'name': format_company_name(row[1]),
'name': format_company_name(row[1]).title(),
'numberOfStocks': row[2],
'marketValue': row[3],
'winRate': row[4],
@ -55,43 +61,10 @@ def all_hedge_funds(con):
sorted_res_list = sorted(res_list, key=lambda x: x['marketValue'], reverse=True)
with open(f"json/hedge-funds/all-hedge-funds.json", 'w') as file:
ujson.dump(sorted_res_list, file)
file.write(orjson.dumps(sorted_res_list).decode("utf-8"))
def spy_performance():
import pandas as pd
import yfinance as yf
from datetime import datetime
# Define the start date and end date
start_date = '1993-01-01'
end_date = datetime.today().strftime('%Y-%m-%d')
# Generate the range of dates with quarterly frequency
date_range = pd.date_range(start=start_date, end=end_date, freq='QE')
# Convert the dates to the desired format (end of quarter dates)
end_of_quarters = date_range.strftime('%Y-%m-%d').tolist()
data = []
df = yf.download('SPY', start='1993-01-01', end=datetime.today(), interval="1d").reset_index()
df = df.rename(columns={'Adj Close': 'close', 'Date': 'date'})
df['date'] = df['date'].dt.strftime('%Y-%m-%d')
for target_date in end_of_quarters:
original_date = target_date
# Find close price for '2015-03-31' or the closest available date prior to it
while target_date not in df['date'].values:
# If the target date doesn't exist, move one day back
target_date = (pd.to_datetime(target_date) - pd.Timedelta(days=1)).strftime('%Y-%m-%d')
# Get the close price for the found or closest date
close_price = round(df[df['date'] == target_date]['close'].values[0],2)
data.append({'date': original_date, 'price': close_price})
def get_data(cik, stock_sectors):
cursor.execute("SELECT cik, name, numberOfStocks, performancePercentage3year, performancePercentage5year, performanceSinceInceptionPercentage, averageHoldingPeriod, turnover, marketValue, winRate, holdings, summary FROM institutes WHERE cik = ?", (cik,))
cik_data = cursor.fetchall()
@ -99,15 +72,11 @@ def get_data(cik, stock_sectors):
'cik': row[0],
'name': row[1],
'numberOfStocks': row[2],
'performancePercentage3year': row[3],
'performancePercentage5year': row[4],
'performanceSinceInceptionPercentage': row[5],
'performancePercentage3Year': row[3],
'averageHoldingPeriod': row[6],
'turnover': row[7],
'marketValue': row[8],
'winRate': row[9],
'holdings': ujson.loads(row[10]),
'summary': ujson.loads(row[11]),
'holdings': orjson.loads(row[10]),
} for row in cik_data]
if not res:
@ -120,30 +89,55 @@ def get_data(cik, stock_sectors):
for holding in res['holdings']
]
res['holdings'] = filtered_holdings
# Cross-reference symbols in holdings with stock_sectors to determine sectors
sector_counts = Counter()
for holding in res['holdings']:
symbol = holding['symbol']
sector = next((item['sector'] for item in stock_sectors if item['symbol'] == symbol), None)
if sector:
sector_counts[sector] += 1
# Calculate the total number of holdings
total_holdings = sum(sector_counts.values())
# Calculate the percentage for each sector and get the top 5
top_5_sectors_percentage = [
{sector: round((count / total_holdings) * 100, 2)}
for sector, count in sector_counts.most_common(5)
filtered_holdings = [
{
**{k: v for k, v in item.items() if k not in ['putCallShare', 'securityName']},
'name': item['securityName'].title()
}
for item in filtered_holdings
if (
item['putCallShare'] == 'Share' and
item['avgPricePaid'] > 0 and
item['marketValue'] > 0 and
item['sharesNumber'] > 0 and
item['weight'] > 0
)
]
res['holdings'] = filtered_holdings
for rank, item in enumerate(res['holdings'], 1):
item['rank'] = rank
sector_list = []
industry_list = []
for item in res['holdings']:
symbol = item['symbol']
ticker_data = stock_screener_data_dict.get(symbol, {})
# Extract specified columns data for each ticker
sector = ticker_data.get('sector',None)
industry = ticker_data.get('industry',None)
# Append data to relevant lists if values are present
if sector:
sector_list.append(sector)
if industry:
industry_list.append(industry)
# Get the top 3 most common sectors and industries
sector_counts = Counter(sector_list)
industry_counts = Counter(industry_list)
main_sectors = [item[0] for item in sector_counts.most_common(3)]
main_industries = [item[0] for item in industry_counts.most_common(3)]
# Add main sectors and industries to the item dictionary
res['mainSectors'] = main_sectors
res['mainIndustries'] = main_industries
# Add the top 5 sectors information to the result
res['topSectors'] = top_5_sectors_percentage
if res:
with open(f"json/hedge-funds/companies/{cik}.json", 'w') as file:
ujson.dump(res, file)
file.write(orjson.dumps(res).decode("utf-8"))
if __name__ == '__main__':
con = sqlite3.connect('institute.db')
@ -164,7 +158,7 @@ if __name__ == '__main__':
stock_con.close()
all_hedge_funds(con)
spy_performance()
#spy_performance()
for cik in tqdm(cik_symbols):
try:
get_data(cik, stock_sectors)