bugfixing

This commit is contained in:
MuslemRahimi 2025-01-25 20:38:01 +01:00
parent 00010b7ab4
commit 5dc5e30730
3 changed files with 141 additions and 114 deletions

View File

@ -887,7 +887,7 @@ async def get_highest_option_iv_rank():
total_oi = stock_screener_data_dict[symbol].get('totalOI',0)
change_oi = stock_screener_data_dict[symbol].get('changeOI',0)
if total_oi > 1E6 and iv_rank > 0:
if total_oi > 1E6 and iv_rank > 0 and iv_rank < 100:
quote_data = await get_quote_data(symbol)
# Assign price and volume, and check if they meet the penny stock criteria
if quote_data:
@ -966,7 +966,7 @@ async def get_highest_option_premium():
if res_list:
# Sort by market cap in descending order
res_list = sorted(res_list, key=lambda x: x['totalPrem'], reverse=True)[:50]
# Assign rank to each stock
for rank, item in enumerate(res_list, start=1):
item['rank'] = rank

View File

@ -22,7 +22,6 @@ query_template = """
"""
def save_json(data, symbol):
directory_path = f"json/options-historical-data/companies"
os.makedirs(directory_path, exist_ok=True) # Ensure the directory exists
@ -36,29 +35,141 @@ def safe_round(value, decimals=2):
return value
def calculate_iv_rank_for_all(data):
# Extract all IV values
iv_values = [entry['iv'] for entry in data if 'iv' in entry]
def aggregate_data_by_date(symbol):
data_by_date = defaultdict(lambda: {
"date": "",
"call_volume": 0,
"put_volume": 0,
"call_open_interest": 0,
"put_open_interest": 0,
"call_premium": 0,
"put_premium": 0,
"iv": 0.0, # Sum of implied volatilities
"iv_count": 0, # Count of entries for IV
})
# Calculate cutoff date (1 year ago)
today = datetime.today().date()
one_year_ago = today - timedelta(days=365)
one_year_ago_str = one_year_ago.strftime('%Y-%m-%d')
contract_dir = f"json/all-options-contracts/{symbol}"
contract_list = get_contracts_from_directory(contract_dir)
if not iv_values:
return None # No IV data available
# Compute highest and lowest IV
highest_iv = max(iv_values)
lowest_iv = min(iv_values)
# Calculate IV Rank for each entry
for entry in data:
if 'iv' in entry:
iv = entry['iv']
if highest_iv == lowest_iv:
entry['iv_rank'] = 100.0 # If all IVs are the same, rank is 100%
if len(contract_list) > 0:
for item in contract_list:
try:
file_path = os.path.join(contract_dir, f"{item}.json")
with open(file_path, "r") as file:
data = orjson.loads(file.read())
option_type = data.get('optionType', None)
if option_type not in ['call', 'put']:
continue
for entry in data.get('history', []):
date = entry.get('date')
# Skip entries older than one year
if date < one_year_ago_str:
continue
volume = entry.get('volume', 0) or 0
open_interest = entry.get('open_interest', 0) or 0
total_premium = entry.get('total_premium', 0) or 0
implied_volatility = entry.get('implied_volatility', 0) or 0
daily_data = data_by_date[date]
daily_data["date"] = date
if option_type == 'call':
daily_data["call_volume"] += int(volume)
daily_data["call_open_interest"] += int(open_interest)
daily_data["call_premium"] += int(total_premium)
elif option_type == 'put':
daily_data["put_volume"] += int(volume)
daily_data["put_open_interest"] += int(open_interest)
daily_data["put_premium"] += int(total_premium)
# Aggregate IV for both calls and puts
daily_data["iv"] += round(implied_volatility, 2)
daily_data["iv_count"] += 1
# Calculate put/call ratio
try:
daily_data["putCallRatio"] = round(daily_data["put_volume"] / daily_data["call_volume"], 2)
except ZeroDivisionError:
daily_data["putCallRatio"] = None
except Exception as e:
print(f"Error processing {item}: {e}")
continue
# Convert to list and calculate average IV
data = []
for date, daily in data_by_date.items():
if daily['iv_count'] > 0:
daily['iv'] = round(daily['iv'] / daily['iv_count'], 2)
else:
entry['iv_rank'] = round(((iv - lowest_iv) / (highest_iv - lowest_iv)) * 100,2)
else:
entry['iv_rank'] = None # Handle missing IV
daily['iv'] = None
data.append(daily)
# Sort and calculate IV Rank
data = sorted(data, key=lambda x: x['date'])
data = calculate_iv_rank_for_all(data)
data = sorted(data, key=lambda x: x['date'], reverse=True)
return data
return data
else:
return []
def calculate_iv_rank_for_all(data):
if not data:
return []
# Convert to DataFrame
df = pd.DataFrame(data)
# Check if 'iv' exists and filter out entries without IV
if 'iv' not in df.columns or df['iv'].isnull().all():
for entry in data:
entry['iv_rank'] = None
return data
# Convert date to datetime and sort
df['date'] = pd.to_datetime(df['date'])
df.sort_values('date', inplace=True)
# Calculate rolling 365-day min and max for IV
df.set_index('date', inplace=True)
rolling_min = df['iv'].rolling('365D', min_periods=1).min()
rolling_max = df['iv'].rolling('365D', min_periods=1).max()
# Merge back into DataFrame
df['rolling_min'] = rolling_min
df['rolling_max'] = rolling_max
# Calculate IV Rank
df['iv_rank'] = ((df['iv'] - df['rolling_min']) / (df['rolling_max'] - df['rolling_min'])) * 100
df['iv_rank'] = df['iv_rank'].round(2)
# Handle cases where max == min
df.loc[df['rolling_max'] == df['rolling_min'], 'iv_rank'] = 100.0
# Replace NaN with None
df['iv_rank'] = df['iv_rank'].where(pd.notnull(df['iv_rank']), None)
# Drop temporary columns
df.drop(['rolling_min', 'rolling_max'], axis=1, inplace=True)
# Convert back to list of dicts
df.reset_index(inplace=True)
df['date'] = df['date'].dt.strftime('%Y-%m-%d')
result = df.to_dict('records')
# Sort in reverse chronological order
result = sorted(result, key=lambda x: x['date'], reverse=True)
return result
def prepare_data(data, symbol):
@ -155,84 +266,6 @@ def get_contracts_from_directory(directory: str):
return []
def aggregate_data_by_date(symbol):
data_by_date = defaultdict(lambda: {
"date": "",
"call_volume": 0,
"put_volume": 0,
"call_open_interest": 0,
"put_open_interest": 0,
"call_premium": 0,
"call_net_premium": 0,
"put_premium": 0,
"put_net_premium": 0,
"iv": 0, # Sum of implied volatilities
"iv_count": 0, # Count of entries for IV
})
contract_dir = f"json/all-options-contracts/{symbol}"
contract_list = get_contracts_from_directory(contract_dir)
if len(contract_list) > 0:
for item in contract_list:
try:
file_path = os.path.join(contract_dir, f"{item}.json")
with open(file_path, "r") as file:
data = orjson.loads(file.read())
option_type = data.get('optionType', None)
if option_type not in ['call', 'put']:
continue
for entry in data.get('history', []):
date = entry.get('date')
volume = entry.get('volume', 0) or 0
open_interest = entry.get('open_interest', 0) or 0
total_premium = entry.get('total_premium', 0) or 0
implied_volatility = entry.get('implied_volatility', 0) or 0
if date:
daily_data = data_by_date[date]
daily_data["date"] = date
if option_type == 'call':
daily_data["call_volume"] += int(volume)
daily_data["call_open_interest"] += int(open_interest)
daily_data["call_premium"] += int(total_premium)
elif option_type == 'put':
daily_data["put_volume"] += int(volume)
daily_data["put_open_interest"] += int(open_interest)
daily_data["put_premium"] += int(total_premium)
daily_data["iv"] += round(implied_volatility, 2)
daily_data["iv_count"] += 1
try:
daily_data["putCallRatio"] = round(daily_data["put_volume"] / daily_data["call_volume"], 2)
except ZeroDivisionError:
daily_data["putCallRatio"] = None
except:
pass
# Convert to list of dictionaries and sort by date
data = list(data_by_date.values())
for daily_data in data:
try:
if daily_data["iv_count"] > 0:
daily_data["iv"] = round(daily_data["iv"] / daily_data["iv_count"], 2)
else:
daily_data["iv"] = None # Or set it to 0 if you prefer
except:
daily_data["iv"] = None
data = sorted(data, key=lambda x: x['date'], reverse=True)
data = calculate_iv_rank_for_all(data)
return data
else:
return []
@ -253,7 +286,7 @@ etf_symbols = [row[0] for row in etf_cursor.fetchall()]
total_symbols = stocks_symbols + etf_symbols
for symbol in tqdm(total_symbols):
for symbol in tqdm(['AAPL']):
try:
data = aggregate_data_by_date(symbol)
data = prepare_data(data, symbol)

View File

@ -916,27 +916,21 @@ async def get_stock_screener(con):
item['shortFloatPercent'] = None
try:
with open(f"json/options-stats/companies/{symbol}.json", "r") as file:
res = orjson.loads(file.read())
item['gexRatio'] = res['gex_ratio']
with open(f"json/options-historical-data/companies/{symbol}.json", "r") as file:
res = orjson.loads(file.read())[0]
item['ivRank'] = res['iv_rank']
item['iv30d'] = res['iv30d']
item['iv30d'] = res['iv']
item['totalOI'] = res['total_open_interest']
item['changeOI'] = res['open_interest_change']
item['netCallPrem'] = res['net_call_premium']
item['netPutPrem'] = res['net_put_premium']
item['changeOI'] = res['changeOI']
item['callVolume'] = res['call_volume']
item['putVolume'] = res['put_volume']
item['pcRatio'] = res['put_call_ratio']
item['totalPrem'] = res['call_premium']+res['put_premium']
item['pcRatio'] = res['putCallRatio']
item['totalPrem'] = res['total_premium']
except:
item['gexRatio'] = None
item['ivRank'] = None
item['iv30d'] = None
item['totalOI'] = None
item['changeOI'] = None
item['netCallPrem'] = None
item['netPutPrem'] = None
item['callVolume'] = None
item['putVolume'] = None
item['pcRatio'] = None