update cron job

This commit is contained in:
MuslemRahimi 2024-07-28 16:45:32 +02:00
parent b17ed8f8ff
commit 6577085c0b

View File

@ -7,6 +7,14 @@ from collections import defaultdict
import os
from dotenv import load_dotenv
import sqlite3
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
# Download required NLTK data
nltk.download('vader_lexicon', quiet=True)
# Initialize the NLTK sentiment analyzer
sia = SentimentIntensityAnalyzer()
con = sqlite3.connect('stocks.db')
@ -24,7 +32,6 @@ etf_symbols = [row[0] for row in etf_cursor.fetchall()]
con.close()
etf_con.close()
load_dotenv()
client_key = os.getenv('REDDIT_API_KEY')
client_secret = os.getenv('REDDIT_API_SECRET')
@ -37,12 +44,6 @@ reddit = praw.Reddit(
user_agent=user_agent
)
# Get subscriber count and active user count
#subreddit = reddit.subreddit("wallstreetbets")
#subscriber_count = subreddit.subscribers
#active_user_count = subreddit.active_user_count
# Function to save data
def save_data(data, filename):
with open(f'json/reddit-tracker/wallstreetbets/{filename}', 'w', encoding='utf-8') as f:
@ -57,12 +58,14 @@ def compute_daily_statistics(file_path):
daily_stats = defaultdict(lambda: {
'post_count': 0,
'total_comments': 0,
'ticker_mentions': defaultdict(int),
'ticker_mentions': defaultdict(lambda: {'total': 0, 'PUT': 0, 'CALL': 0, 'sentiment': []}),
'unique_tickers': set()
})
# Compile regex pattern for finding tickers
# Compile regex patterns for finding tickers, PUT, and CALL
ticker_pattern = re.compile(r'\$([A-Z]+)')
put_pattern = re.compile(r'\b(PUT|PUTS)\b', re.IGNORECASE)
call_pattern = re.compile(r'\b(CALL|CALLS)\b', re.IGNORECASE)
# Process each post
for post in data:
@ -77,9 +80,23 @@ def compute_daily_statistics(file_path):
text_to_search = post['title'] + ' ' + post['selftext']
tickers = ticker_pattern.findall(text_to_search)
# Check for PUT and CALL mentions
put_mentions = len(put_pattern.findall(text_to_search))
call_mentions = len(call_pattern.findall(text_to_search))
# Perform sentiment analysis
sentiment_scores = sia.polarity_scores(text_to_search)
for ticker in tickers:
daily_stats[post_date]['ticker_mentions'][ticker] += 1
daily_stats[post_date]['ticker_mentions'][ticker]['total'] += 1
daily_stats[post_date]['unique_tickers'].add(ticker)
# Add PUT and CALL counts
daily_stats[post_date]['ticker_mentions'][ticker]['PUT'] += put_mentions
daily_stats[post_date]['ticker_mentions'][ticker]['CALL'] += call_mentions
# Add sentiment score
daily_stats[post_date]['ticker_mentions'][ticker]['sentiment'].append(sentiment_scores['compound'])
# Calculate averages and format the results
formatted_stats = []
@ -88,26 +105,45 @@ def compute_daily_statistics(file_path):
'date': date.isoformat(),
'totalPosts': stats['post_count'],
'totalComments': stats['total_comments'],
'totalMentions': sum(stats['ticker_mentions'].values()),
'totalMentions': sum(mentions['total'] for mentions in stats['ticker_mentions'].values()),
'companySpread': len(stats['unique_tickers']),
'tickerMentions': dict(stats['ticker_mentions']) # Optional: include detailed ticker mentions
'tickerMentions': [
{
'symbol': ticker,
'count': mentions['total'],
'put': mentions['PUT'],
'call': mentions['CALL']
}
for ticker, mentions in stats['ticker_mentions'].items()
]
})
return formatted_stats, daily_stats
# Function to compute trending tickers
def compute_trending_tickers(daily_stats):
today = datetime.now().date()
seven_days_ago = today - timedelta(days=14)
trending = defaultdict(int)
trending = defaultdict(lambda: {'total': 0, 'PUT': 0, 'CALL': 0, 'sentiment': []})
for date, stats in daily_stats.items():
if seven_days_ago <= date <= today:
for ticker, count in stats['ticker_mentions'].items():
trending[ticker] += count
for ticker, counts in stats['ticker_mentions'].items():
trending[ticker]['total'] += counts['total']
trending[ticker]['PUT'] += counts['PUT']
trending[ticker]['CALL'] += counts['CALL']
trending[ticker]['sentiment'].extend(counts['sentiment'])
trending_list = [{'symbol': symbol, 'count': count} for symbol, count in trending.items()]
trending_list = [
{
'symbol': symbol,
'count': counts['total'],
'put': counts['PUT'],
'call': counts['CALL'],
'avgSentiment': sum(counts['sentiment']) / len(counts['sentiment']) if counts['sentiment'] else 0
}
for symbol, counts in trending.items()
]
trending_list.sort(key=lambda x: x['count'], reverse=True)
for item in trending_list: