update cron job

This commit is contained in:
MuslemRahimi 2024-09-11 22:40:39 +02:00
parent b49928fe74
commit 670c6c529f

View File

@ -24,82 +24,81 @@ def calculate_moving_average(data, window_size):
moving_avg = (cumsum[window_size - 1:] - np.concatenate(([0], cumsum[:-window_size]))) / window_size moving_avg = (cumsum[window_size - 1:] - np.concatenate(([0], cumsum[:-window_size]))) / window_size
return moving_avg.tolist() return moving_avg.tolist()
def calculate_net_flow(data, window_size=20):
date_data = defaultdict(lambda: {'price': [], 'netCall': 0, 'netPut': 0})
def calculate_net_flow(data):
date_data = defaultdict(lambda: {'price': [], 'netCall': 0, 'netPut': 0})
for item in data: for item in data:
date = item['date'] date_str = item['date']
time_str = item['time']
datetime_str = f"{date_str} {time_str}"
# Parse the combined date and time into a datetime object
date_time = datetime.strptime(datetime_str, '%Y-%m-%d %H:%M:%S')
try: try:
premium = float(item['cost_basis']) premium = float(item['cost_basis'])
date_data[date]['price'].append(float(item['underlying_price'])) date_data[date_time]['price'].append(round(float(item['underlying_price']), 2))
#date_data[date]['volume'] += volume
if item['put_call'] == 'CALL': if item['put_call'] == 'CALL':
if item['execution_estimate'] == 'AT_ASK': if item['execution_estimate'] == 'AT_ASK':
date_data[date]['netCall'] += premium date_data[date_time]['netCall'] += premium
elif item['execution_estimate'] == 'AT_BID': elif item['execution_estimate'] == 'AT_BID':
date_data[date]['netCall'] -= premium date_data[date_time]['netCall'] -= premium
elif item['put_call'] == 'PUT': elif item['put_call'] == 'PUT':
if item['execution_estimate'] == 'AT_ASK': if item['execution_estimate'] == 'AT_ASK':
date_data[date]['netPut'] -= premium date_data[date_time]['netPut'] -= premium
elif item['execution_estimate'] == 'AT_BID': elif item['execution_estimate'] == 'AT_BID':
date_data[date]['netPut'] += premium date_data[date_time]['netPut'] += premium
except: except:
pass pass
#volume = int(item['volume'])
# Calculate average underlying price and format the results # Calculate average underlying price and format the results
result = [] result = []
for date, values in date_data.items(): for date_time, values in date_data.items():
avg_price = sum(values['price']) / len(values['price'])
#volume = values['volume']
# Change sign of volume if netPut > netCall
#if values['netPut'] > values['netCall']:
# volume = -volume
result.append({ result.append({
'date': date, 'date': date_time.strftime('%Y-%m-%d %H:%M:%S'),
'price': round(avg_price, 2), 'price': sum(values['price']) / len(values['price']) if values['price'] else 0,
'netCall': int(values['netCall']), 'netCall': int(values['netCall']),
'netPut': int(values['netPut']), 'netPut': int(values['netPut']),
#'volume': int(volume)
}) })
sorted_data = sorted(result, key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d'))
sorted_data = sorted(result, key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d %H:%M:%S'))
# Calculate moving averages # Compute 30-minute interval averages
netCall_values = [item['netCall'] for item in sorted_data] interval_data = defaultdict(lambda: {'price': [], 'netCall': [], 'netPut': []})
netPut_values = [item['netPut'] for item in sorted_data] for item in sorted_data:
date_time = datetime.strptime(item['date'], '%Y-%m-%d %H:%M:%S')
interval_start = date_time.replace(minute=date_time.minute // 120 * 120, second=0)
netCall_ma = calculate_moving_average(netCall_values, window_size) interval_data[interval_start]['price'].append(item['price'])
netPut_ma = calculate_moving_average(netPut_values, window_size) interval_data[interval_start]['netCall'].append(item['netCall'])
interval_data[interval_start]['netPut'].append(item['netPut'])
# Add moving averages to the result and remove None values # Calculate averages for each 30-minute interval
filtered_data = [] averaged_data = []
for interval_start, values in interval_data.items():
# Add moving averages to the result if values['price']:
filtered_data = [] averaged_data.append({
for i, item in enumerate(sorted_data): 'date': interval_start.strftime('%Y-%m-%d %H:%M:%S'),
if i >= window_size - 1: #'price': sum(values['price']) / len(values['price']) ,
item['netCall'] = int(netCall_ma[i - window_size + 1]) 'netCall': sum(values['netCall']) if values['netCall'] else 0,
item['netPut'] = int(netPut_ma[i - window_size + 1]) 'netPut': sum(values['netPut']) if values['netPut'] else 0,
filtered_data.append(item) })
return filtered_data
# Sort the averaged data by interval start time
averaged_data.sort(key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d %H:%M:%S'))
return averaged_data
def get_data(symbol): def get_data(symbol):
try: try:
end_date = date.today() end_date = date.today()
start_date = end_date - timedelta(200) start_date = end_date - timedelta(10)
end_date_str = end_date.strftime('%Y-%m-%d') end_date_str = end_date.strftime('%Y-%m-%d')
start_date_str = start_date.strftime('%Y-%m-%d') start_date_str = start_date.strftime('%Y-%m-%d')
res_list = [] res_list = []
for page in range(0, 100): for page in range(0, 1000):
try: try:
data = fin.options_activity(company_tickers=symbol, page=page, pagesize=1000, date_from=start_date_str, date_to=end_date_str) data = fin.options_activity(company_tickers=symbol, page=page, pagesize=1000, date_from=start_date_str, date_to=end_date_str)
data = ujson.loads(fin.output(data))['option_activity'] data = ujson.loads(fin.output(data))['option_activity']
@ -107,8 +106,7 @@ def get_data(symbol):
except: except:
break break
res_filtered = [{key: value for key, value in item.items() if key in ['ticker','date','execution_estimate', 'underlying_price', 'put_call', 'cost_basis']} for item in res_list] res_filtered = [{key: value for key, value in item.items() if key in ['ticker','time','date','execution_estimate', 'underlying_price', 'put_call', 'cost_basis']} for item in res_list]
#Save raw data for each ticker for options page stack bar chart #Save raw data for each ticker for options page stack bar chart
ticker_filtered_data = [entry for entry in res_filtered if entry['ticker'] == symbol] ticker_filtered_data = [entry for entry in res_filtered if entry['ticker'] == symbol]
@ -126,7 +124,7 @@ def get_data(symbol):
try: try:
stock_con = sqlite3.connect('stocks.db') stock_con = sqlite3.connect('stocks.db')
stock_cursor = stock_con.cursor() stock_cursor = stock_con.cursor()
stock_cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'") stock_cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE marketCap >500E6 AND symbol NOT LIKE '%.%'")
stock_symbols = [row[0] for row in stock_cursor.fetchall()] stock_symbols = [row[0] for row in stock_cursor.fetchall()]
etf_con = sqlite3.connect('etf.db') etf_con = sqlite3.connect('etf.db')