update cron job
This commit is contained in:
parent
b49928fe74
commit
670c6c529f
@ -24,82 +24,81 @@ def calculate_moving_average(data, window_size):
|
||||
moving_avg = (cumsum[window_size - 1:] - np.concatenate(([0], cumsum[:-window_size]))) / window_size
|
||||
return moving_avg.tolist()
|
||||
|
||||
def calculate_net_flow(data, window_size=20):
|
||||
date_data = defaultdict(lambda: {'price': [], 'netCall': 0, 'netPut': 0})
|
||||
|
||||
def calculate_net_flow(data):
|
||||
date_data = defaultdict(lambda: {'price': [], 'netCall': 0, 'netPut': 0})
|
||||
for item in data:
|
||||
date = item['date']
|
||||
date_str = item['date']
|
||||
time_str = item['time']
|
||||
datetime_str = f"{date_str} {time_str}"
|
||||
|
||||
# Parse the combined date and time into a datetime object
|
||||
date_time = datetime.strptime(datetime_str, '%Y-%m-%d %H:%M:%S')
|
||||
|
||||
try:
|
||||
premium = float(item['cost_basis'])
|
||||
date_data[date]['price'].append(float(item['underlying_price']))
|
||||
#date_data[date]['volume'] += volume
|
||||
|
||||
date_data[date_time]['price'].append(round(float(item['underlying_price']), 2))
|
||||
if item['put_call'] == 'CALL':
|
||||
if item['execution_estimate'] == 'AT_ASK':
|
||||
date_data[date]['netCall'] += premium
|
||||
date_data[date_time]['netCall'] += premium
|
||||
elif item['execution_estimate'] == 'AT_BID':
|
||||
date_data[date]['netCall'] -= premium
|
||||
date_data[date_time]['netCall'] -= premium
|
||||
elif item['put_call'] == 'PUT':
|
||||
if item['execution_estimate'] == 'AT_ASK':
|
||||
date_data[date]['netPut'] -= premium
|
||||
date_data[date_time]['netPut'] -= premium
|
||||
elif item['execution_estimate'] == 'AT_BID':
|
||||
date_data[date]['netPut'] += premium
|
||||
date_data[date_time]['netPut'] += premium
|
||||
except:
|
||||
pass
|
||||
#volume = int(item['volume'])
|
||||
|
||||
# Calculate average underlying price and format the results
|
||||
result = []
|
||||
for date, values in date_data.items():
|
||||
avg_price = sum(values['price']) / len(values['price'])
|
||||
#volume = values['volume']
|
||||
|
||||
# Change sign of volume if netPut > netCall
|
||||
#if values['netPut'] > values['netCall']:
|
||||
# volume = -volume
|
||||
|
||||
for date_time, values in date_data.items():
|
||||
result.append({
|
||||
'date': date,
|
||||
'price': round(avg_price, 2),
|
||||
'date': date_time.strftime('%Y-%m-%d %H:%M:%S'),
|
||||
'price': sum(values['price']) / len(values['price']) if values['price'] else 0,
|
||||
'netCall': int(values['netCall']),
|
||||
'netPut': int(values['netPut']),
|
||||
#'volume': int(volume)
|
||||
})
|
||||
sorted_data = sorted(result, key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d'))
|
||||
|
||||
sorted_data = sorted(result, key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d %H:%M:%S'))
|
||||
|
||||
# Calculate moving averages
|
||||
netCall_values = [item['netCall'] for item in sorted_data]
|
||||
netPut_values = [item['netPut'] for item in sorted_data]
|
||||
# Compute 30-minute interval averages
|
||||
interval_data = defaultdict(lambda: {'price': [], 'netCall': [], 'netPut': []})
|
||||
for item in sorted_data:
|
||||
date_time = datetime.strptime(item['date'], '%Y-%m-%d %H:%M:%S')
|
||||
interval_start = date_time.replace(minute=date_time.minute // 120 * 120, second=0)
|
||||
|
||||
netCall_ma = calculate_moving_average(netCall_values, window_size)
|
||||
netPut_ma = calculate_moving_average(netPut_values, window_size)
|
||||
interval_data[interval_start]['price'].append(item['price'])
|
||||
interval_data[interval_start]['netCall'].append(item['netCall'])
|
||||
interval_data[interval_start]['netPut'].append(item['netPut'])
|
||||
|
||||
# Add moving averages to the result and remove None values
|
||||
filtered_data = []
|
||||
|
||||
# Add moving averages to the result
|
||||
filtered_data = []
|
||||
for i, item in enumerate(sorted_data):
|
||||
if i >= window_size - 1:
|
||||
item['netCall'] = int(netCall_ma[i - window_size + 1])
|
||||
item['netPut'] = int(netPut_ma[i - window_size + 1])
|
||||
filtered_data.append(item)
|
||||
|
||||
return filtered_data
|
||||
# Calculate averages for each 30-minute interval
|
||||
averaged_data = []
|
||||
for interval_start, values in interval_data.items():
|
||||
if values['price']:
|
||||
averaged_data.append({
|
||||
'date': interval_start.strftime('%Y-%m-%d %H:%M:%S'),
|
||||
#'price': sum(values['price']) / len(values['price']) ,
|
||||
'netCall': sum(values['netCall']) if values['netCall'] else 0,
|
||||
'netPut': sum(values['netPut']) if values['netPut'] else 0,
|
||||
})
|
||||
|
||||
# Sort the averaged data by interval start time
|
||||
averaged_data.sort(key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d %H:%M:%S'))
|
||||
|
||||
return averaged_data
|
||||
|
||||
def get_data(symbol):
|
||||
try:
|
||||
end_date = date.today()
|
||||
start_date = end_date - timedelta(200)
|
||||
start_date = end_date - timedelta(10)
|
||||
|
||||
end_date_str = end_date.strftime('%Y-%m-%d')
|
||||
start_date_str = start_date.strftime('%Y-%m-%d')
|
||||
|
||||
res_list = []
|
||||
for page in range(0, 100):
|
||||
for page in range(0, 1000):
|
||||
try:
|
||||
data = fin.options_activity(company_tickers=symbol, page=page, pagesize=1000, date_from=start_date_str, date_to=end_date_str)
|
||||
data = ujson.loads(fin.output(data))['option_activity']
|
||||
@ -107,8 +106,7 @@ def get_data(symbol):
|
||||
except:
|
||||
break
|
||||
|
||||
res_filtered = [{key: value for key, value in item.items() if key in ['ticker','date','execution_estimate', 'underlying_price', 'put_call', 'cost_basis']} for item in res_list]
|
||||
|
||||
res_filtered = [{key: value for key, value in item.items() if key in ['ticker','time','date','execution_estimate', 'underlying_price', 'put_call', 'cost_basis']} for item in res_list]
|
||||
|
||||
#Save raw data for each ticker for options page stack bar chart
|
||||
ticker_filtered_data = [entry for entry in res_filtered if entry['ticker'] == symbol]
|
||||
@ -126,7 +124,7 @@ def get_data(symbol):
|
||||
try:
|
||||
stock_con = sqlite3.connect('stocks.db')
|
||||
stock_cursor = stock_con.cursor()
|
||||
stock_cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
|
||||
stock_cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE marketCap >500E6 AND symbol NOT LIKE '%.%'")
|
||||
stock_symbols = [row[0] for row in stock_cursor.fetchall()]
|
||||
|
||||
etf_con = sqlite3.connect('etf.db')
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user