bugfixing price target
This commit is contained in:
parent
05f504642d
commit
695eae90ca
@ -8,6 +8,7 @@ import time
|
||||
import sqlite3
|
||||
import ujson
|
||||
import math
|
||||
import statistics
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
|
||||
@ -31,92 +32,84 @@ def remove_duplicates(data, key):
|
||||
|
||||
|
||||
def get_summary(res_list):
|
||||
#Get Latest Summary of ratings from the last 12 months
|
||||
# -Number of Analyst, -Price Target, -Consensus Rating
|
||||
end_date = date.today()
|
||||
start_date = end_date - timedelta(days=365) #end_date is today
|
||||
filtered_data = [item for item in res_list if start_date <= datetime.strptime(item['date'], '%Y-%m-%d').date() <= end_date]
|
||||
# Get the latest summary of ratings from the last 12 months
|
||||
end_date = date.today()
|
||||
start_date = end_date - timedelta(days=365) # end_date is today
|
||||
|
||||
# Filter the data for the last 12 months
|
||||
filtered_data = [item for item in res_list if start_date <= datetime.strptime(item['date'], '%Y-%m-%d').date() <= end_date]
|
||||
|
||||
# Initialize dictionary to store the latest price target for each analyst
|
||||
latest_pt_current = defaultdict(int)
|
||||
|
||||
# Iterate through the filtered data to update the latest pt_current for each analyst
|
||||
for item in filtered_data:
|
||||
if 'adjusted_pt_current' in item and item['adjusted_pt_current']:
|
||||
analyst_name = item['analyst_name']
|
||||
try:
|
||||
pt_current_value = float(item['adjusted_pt_current'])
|
||||
# Update with the maximum value for each analyst
|
||||
if isinstance(pt_current_value, (float, int)):
|
||||
latest_pt_current[analyst_name] = max(latest_pt_current.get(analyst_name, pt_current_value), pt_current_value)
|
||||
except (ValueError, TypeError):
|
||||
print(f"Invalid pt_current value for analyst '{analyst_name}': {item['pt_current']}")
|
||||
|
||||
# Get the price target values
|
||||
pt_current_values = list(latest_pt_current.values())
|
||||
|
||||
# Compute the median pt_current if there are values, otherwise set to 0
|
||||
median_pt_current = statistics.median(pt_current_values) if pt_current_values else 0
|
||||
#print("Median pt_current:", round(median_pt_current, 2))
|
||||
|
||||
#Compute Average Price Target
|
||||
latest_pt_current = defaultdict(int)
|
||||
# Iterate through the data to update the latest pt_current for each analyst
|
||||
for item in filtered_data:
|
||||
if 'adjusted_pt_current' in item and item['adjusted_pt_current']:
|
||||
analyst_name = item['analyst_name']
|
||||
# Convert pt_current to float and check if it's a valid number
|
||||
try:
|
||||
pt_current_value = float(item['pt_current'])
|
||||
# Check if the value is float or int
|
||||
if isinstance(pt_current_value, (float, int)):
|
||||
# Initialize the analyst entry if it doesn't exist
|
||||
if analyst_name not in latest_pt_current:
|
||||
latest_pt_current[analyst_name] = pt_current_value
|
||||
else:
|
||||
# Update with the maximum value
|
||||
latest_pt_current[analyst_name] = max(latest_pt_current[analyst_name], pt_current_value)
|
||||
except (ValueError, TypeError):
|
||||
print(f"Invalid pt_current value for analyst '{analyst_name}': {item['pt_current']}")
|
||||
consensus_ratings = defaultdict(str)
|
||||
# Define the rating hierarchy
|
||||
rating_hierarchy = {'Strong Sell': 0, 'Sell': 1, 'Hold': 2, 'Buy': 3, 'Strong Buy': 4}
|
||||
|
||||
# Iterate through the data to update the consensus rating for each analyst
|
||||
for item in filtered_data:
|
||||
if 'rating_current' in item and item['rating_current'] and 'analyst_name' in item and item['analyst_name']:
|
||||
try:
|
||||
analyst_name = item['analyst_name']
|
||||
current_rating = item['rating_current']
|
||||
if current_rating in rating_hierarchy:
|
||||
consensus_ratings[analyst_name] = current_rating
|
||||
except:
|
||||
pass
|
||||
|
||||
# Compute the average pt_current based on the latest values
|
||||
pt_current_values = list(latest_pt_current.values())
|
||||
average_pt_current = sum(pt_current_values) / len(pt_current_values) if pt_current_values else 0
|
||||
# Compute the consensus rating based on the most frequent rating among analysts
|
||||
consensus_rating_counts = defaultdict(int)
|
||||
for rating in consensus_ratings.values():
|
||||
consensus_rating_counts[rating] += 1
|
||||
|
||||
#print("Average pt_current:", round(average_pt_current, 2))
|
||||
consensus_rating = max(consensus_rating_counts, key=consensus_rating_counts.get)
|
||||
#print("Consensus Rating:", consensus_rating)
|
||||
|
||||
# Sum up all Buy, Sell, Hold for the progress bar in sveltekit
|
||||
# Convert defaultdict to regular dictionary
|
||||
data_dict = dict(consensus_rating_counts)
|
||||
|
||||
# Sum up 'Strong Buy' and 'Buy'
|
||||
buy_total = data_dict.get('Strong Buy', 0) + data_dict.get('Buy', 0)
|
||||
|
||||
# Sum up 'Strong Sell' and 'Sell'
|
||||
sell_total = data_dict.get('Strong Sell', 0) + data_dict.get('Sell', 0)
|
||||
hold_total = data_dict.get('Hold', 0)
|
||||
|
||||
# Compute Consensus Rating
|
||||
consensus_ratings = defaultdict(str)
|
||||
# Define the rating hierarchy
|
||||
rating_hierarchy = {'Strong Sell': 0, 'Sell': 1, 'Hold': 2, 'Buy': 3, 'Strong Buy': 4}
|
||||
unique_analyst_names = set()
|
||||
numOfAnalyst = 0
|
||||
|
||||
# Iterate through the data to update the consensus rating for each analyst
|
||||
for item in filtered_data:
|
||||
if 'rating_current' in item and item['rating_current'] and 'analyst_name' in item and item['analyst_name']:
|
||||
try:
|
||||
analyst_name = item['analyst_name']
|
||||
current_rating = item['rating_current']
|
||||
if current_rating in rating_hierarchy:
|
||||
consensus_ratings[analyst_name] = current_rating
|
||||
except:
|
||||
pass
|
||||
for item in filtered_data:
|
||||
if item['analyst_name'] not in unique_analyst_names:
|
||||
unique_analyst_names.add(item['analyst_name'])
|
||||
numOfAnalyst += 1
|
||||
#print("Number of unique analyst names:", numOfAnalyst)
|
||||
|
||||
# Compute the consensus rating based on the most frequent rating among analysts
|
||||
consensus_rating_counts = defaultdict(int)
|
||||
for rating in consensus_ratings.values():
|
||||
consensus_rating_counts[rating] += 1
|
||||
stats = {'numOfAnalyst': numOfAnalyst, 'consensusRating': consensus_rating, 'priceTarget': round(median_pt_current, 2)}
|
||||
categorical_ratings = {'Buy': buy_total, 'Sell': sell_total, 'Hold': hold_total}
|
||||
|
||||
res = {**stats, **categorical_ratings}
|
||||
return res
|
||||
|
||||
consensus_rating = max(consensus_rating_counts, key=consensus_rating_counts.get)
|
||||
#print("Consensus Rating:", consensus_rating)
|
||||
|
||||
#Sum up all Buy,Sell,Hold for the progress bar in sveltekit
|
||||
# Convert defaultdict to regular dictionary
|
||||
data_dict = dict(consensus_rating_counts)
|
||||
|
||||
# Sum up 'Strong Buy' and 'Buy'
|
||||
buy_total = data_dict.get('Strong Buy', 0) + data_dict.get('Buy', 0)
|
||||
|
||||
# Sum up 'Strong Sell' and 'Sell'
|
||||
sell_total = data_dict.get('Strong Sell', 0) + data_dict.get('Sell', 0)
|
||||
hold_total = data_dict.get('Hold', 0)
|
||||
|
||||
|
||||
unique_analyst_names = set()
|
||||
numOfAnalyst = 0
|
||||
|
||||
for item in filtered_data:
|
||||
if item['analyst_name'] not in unique_analyst_names:
|
||||
unique_analyst_names.add(item['analyst_name'])
|
||||
numOfAnalyst += 1
|
||||
#print("Number of unique analyst names:", numOfAnalyst)
|
||||
|
||||
stats = {'numOfAnalyst': numOfAnalyst, 'consensusRating': consensus_rating, 'priceTarget': round(average_pt_current, 2)}
|
||||
categorical_ratings = {'Buy': buy_total, 'Sell': sell_total, 'Hold': hold_total}
|
||||
|
||||
res = {**stats, **categorical_ratings}
|
||||
return res
|
||||
|
||||
def run(chunk,analyst_list):
|
||||
end_date = date.today()
|
||||
@ -247,7 +240,7 @@ try:
|
||||
chunk_size = len(stock_symbols) // 40 # Divide the list into N chunks
|
||||
|
||||
chunks = [stock_symbols[i:i + chunk_size] for i in range(0, len(stock_symbols), chunk_size)]
|
||||
#chunks = [['NVDA']]
|
||||
#chunks = [['CMG']]
|
||||
for chunk in chunks:
|
||||
run(chunk, analyst_stats_list)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user