add market flow cron job

This commit is contained in:
MuslemRahimi 2024-12-28 12:57:11 +01:00
parent e251488614
commit 753f43f09a

View File

@ -14,7 +14,7 @@ headers = {
"Accept": "application/json, text/plain",
"Authorization": api_key
}
ny_tz = pytz.timezone('America/New_York')
def save_json(data):
@ -23,13 +23,27 @@ def save_json(data):
with open(f"{directory}/data.json", 'wb') as file: # Use binary mode for orjson
file.write(orjson.dumps(data))
def convert_tape_time(data_list):
# Function to convert and match timestamps
def add_close_to_data(price_list, data):
for entry in data:
# Convert timestamp to New York time and desired format
timestamp = datetime.fromisoformat(entry['timestamp']).astimezone(ny_tz)
formatted_time = timestamp.strftime('%Y-%m-%d %H:%M:%S')
# Match with price_list
for price in price_list:
if price['time'] == formatted_time:
entry['close'] = price['close']
break # Match found, no need to continue searching
return data
def convert_time(data_list):
# Iterate through the list and update the 'tape_time' field for each dictionary
for item in data_list:
utc_time = datetime.strptime(item['tape_time'], "%Y-%m-%dT%H:%M:%SZ").replace(tzinfo=pytz.UTC)
utc_time = datetime.strptime(item['timestamp'], "%Y-%m-%dT%H:%M:%SZ").replace(tzinfo=pytz.UTC)
new_york_tz = pytz.timezone("America/New_York")
ny_time = utc_time.astimezone(new_york_tz)
item['tape_time'] = ny_time.strftime("%Y-%m-%d %H:%M:%S")
item['timestamp'] = ny_time.strftime("%Y-%m-%d %H:%M:%S")
return data_list
@ -111,7 +125,7 @@ def get_sector_data():
#get prem tick data:
'''
if symbol != 'SPY':
prem_tick_history = get_net_prem_ticks(symbol)
prem_tick_history = get_etf_tide(symbol)
#if symbol == 'XLB':
# print(prem_tick_history[10])
@ -125,81 +139,20 @@ def get_sector_data():
print(e)
return []
def get_net_prem_ticks(symbol):
def get_market_tide():
# Fetch data from the API
url = f"https://api.unusualwhales.com/api/stock/{symbol}/net-prem-ticks"
response = requests.get(url, headers=headers)
querystring = {"interval_5m":"false"}
url = f"https://api.unusualwhales.com/api/market/market-tide"
response = requests.get(url, headers=headers, params=querystring)
data = response.json().get('data', [])
print(data[0])
# Sort data by date in descending order
data = sorted(data, key=lambda x: datetime.fromisoformat(x['date'].replace('Z', '+00:00')), reverse=True)
# Convert tape_time if necessary
data = convert_tape_time(data)
# Load price list
with open(f"json/one-day-price/{symbol}.json") as file:
with open(f"json/one-day-price/SPY.json") as file:
price_list = orjson.loads(file.read())
# Get the start time from the earliest tape_time in data
if not data:
return []
start_time = datetime.strptime(data[0]['tape_time'], '%Y-%m-%d %H:%M:%S')
end_time = datetime.combine(start_time.date(), datetime.strptime('22:00:00', '%H:%M:%S').time())
# Generate 1-minute intervals
intervals = generate_time_intervals(start_time, end_time)
# Create a dictionary for fast lookups of existing tape_time
data_dict = {entry['tape_time']: entry for entry in data}
# Initialize aggregated data with cumulative sums
aggregated_data = {time: {
'net_call_premium': 0,
'net_put_premium': 0,
'net_call_volume': 0,
'net_put_volume': 0,
'tape_time': time,
'close': None
} for time in intervals}
# Variable to track cumulative sums
cumulative_net_call_premium = 0
cumulative_net_put_premium = 0
cumulative_net_call_volume = 0
cumulative_net_put_volume = 0
# Aggregate data for each minute, cumulatively adding values
for time in intervals:
if time in data_dict:
entry = data_dict[time]
# Add current values to cumulative sums
cumulative_net_call_premium += float(entry.get('net_call_premium', 0))
cumulative_net_put_premium += float(entry.get('net_put_premium', 0))
cumulative_net_call_volume += float(entry.get('net_call_volume', 0))
cumulative_net_put_volume += float(entry.get('net_put_volume', 0))
# Set the aggregated values for this minute
aggregated_data[time]['net_call_premium'] = cumulative_net_call_premium
aggregated_data[time]['net_put_premium'] = cumulative_net_put_premium
aggregated_data[time]['net_call_volume'] = cumulative_net_call_volume
aggregated_data[time]['net_put_volume'] = cumulative_net_put_volume
data = add_close_to_data(price_list, data)
# Populate data with aggregated results
populated_data = list(aggregated_data.values())
# Add 'close' values if matches found in price_list
matched = False
for entry in populated_data:
for price in price_list:
if entry['tape_time'] == price['time']:
entry['close'] = price['close']
matched = True
break # Exit inner loop once a match is found
return populated_data if matched else []
return data
def get_top_sector_tickers():
keep_elements = ['price', 'ticker', 'name', 'changesPercentage','netPremium','netCallPremium','netPutPremium','gexRatio','gexNetChange','ivRank']
@ -267,16 +220,14 @@ def get_top_sector_tickers():
def main():
market_tide = get_market_tide()
sector_data = get_sector_data()
top_sector_tickers = get_top_sector_tickers()
data = {'sectorData': sector_data, 'topSectorTickers': top_sector_tickers}
data = {'sectorData': sector_data, 'topSectorTickers': top_sector_tickers, 'marketTide': market_tide}
if len(data) > 0:
save_json(data)
#get_net_prem_ticks('XLB')
if __name__ == '__main__':
main()