add industry
This commit is contained in:
parent
aefcb90547
commit
7961a105e1
111
app/cron_industry.py
Normal file
111
app/cron_industry.py
Normal file
@ -0,0 +1,111 @@
|
||||
import aiohttp
|
||||
import ujson
|
||||
import sqlite3
|
||||
import asyncio
|
||||
import pandas as pd
|
||||
from tqdm import tqdm
|
||||
import orjson
|
||||
from collections import defaultdict
|
||||
|
||||
with open(f"json/stock-screener/data.json", 'rb') as file:
|
||||
stock_screener_data = orjson.loads(file.read())
|
||||
|
||||
# Convert stock_screener_data into a dictionary keyed by symbol
|
||||
stock_screener_data_dict = {item['symbol']: item for item in stock_screener_data}
|
||||
|
||||
|
||||
def save_as_json(data):
|
||||
with open(f"json/industry/overview.json", 'w') as file:
|
||||
ujson.dump(data, file)
|
||||
|
||||
|
||||
#async def get_data():
|
||||
|
||||
|
||||
def run():
|
||||
# Initialize a dictionary to store stock count, market cap, and other totals for each industry
|
||||
sector_industry_data = defaultdict(lambda: defaultdict(lambda: {
|
||||
'numStocks': 0,
|
||||
'totalMarketCap': 0.0,
|
||||
'totalPE': 0.0,
|
||||
'totalDividendYield': 0.0,
|
||||
'totalNetIncome': 0.0,
|
||||
'totalRevenue': 0.0,
|
||||
'totalChange1M': 0.0,
|
||||
'totalChange1Y': 0.0,
|
||||
'peCount': 0,
|
||||
'dividendCount': 0,
|
||||
'change1MCount': 0,
|
||||
'change1YCount': 0
|
||||
}))
|
||||
|
||||
# Iterate through stock_screener_data to accumulate values
|
||||
for stock in stock_screener_data:
|
||||
sector = stock.get('sector')
|
||||
industry = stock.get('industry')
|
||||
market_cap = stock.get('marketCap')
|
||||
pe = stock.get('pe')
|
||||
dividend_yield = stock.get('dividendYield')
|
||||
net_income = stock.get('netIncome')
|
||||
revenue = stock.get('revenue')
|
||||
change_1_month = stock.get('change1M')
|
||||
change_1_year = stock.get('change1Y')
|
||||
|
||||
# Ensure both sector and industry are valid and that market cap is a valid number
|
||||
if sector and industry and market_cap is not None:
|
||||
# Update stock count and accumulate market cap
|
||||
sector_industry_data[sector][industry]['numStocks'] += 1
|
||||
sector_industry_data[sector][industry]['totalMarketCap'] += float(market_cap)
|
||||
|
||||
# Accumulate PE ratio if available
|
||||
if pe is not None:
|
||||
sector_industry_data[sector][industry]['totalPE'] += float(pe)
|
||||
sector_industry_data[sector][industry]['peCount'] += 1
|
||||
|
||||
# Accumulate dividend yield if available
|
||||
if dividend_yield is not None:
|
||||
sector_industry_data[sector][industry]['totalDividendYield'] += float(dividend_yield)
|
||||
sector_industry_data[sector][industry]['dividendCount'] += 1
|
||||
|
||||
# Accumulate net income and revenue for profit margin calculation
|
||||
if net_income is not None and revenue is not None:
|
||||
sector_industry_data[sector][industry]['totalNetIncome'] += float(net_income)
|
||||
sector_industry_data[sector][industry]['totalRevenue'] += float(revenue)
|
||||
|
||||
# Accumulate 1-month change if available
|
||||
if change_1_month is not None:
|
||||
sector_industry_data[sector][industry]['totalChange1M'] += float(change_1_month)
|
||||
sector_industry_data[sector][industry]['change1MCount'] += 1
|
||||
|
||||
# Accumulate 1-year change if available
|
||||
if change_1_year is not None:
|
||||
sector_industry_data[sector][industry]['totalChange1Y'] += float(change_1_year)
|
||||
sector_industry_data[sector][industry]['change1YCount'] += 1
|
||||
|
||||
# Prepare the final data in the requested format
|
||||
result = {}
|
||||
|
||||
for sector, industries in sector_industry_data.items():
|
||||
# Sort industries by stock count in descending order
|
||||
sorted_industries = sorted(industries.items(), key=lambda x: x[1]['numStocks'], reverse=True)
|
||||
|
||||
# Add sorted industries with averages to the result for each sector
|
||||
result[sector] = [
|
||||
{
|
||||
'industry': industry,
|
||||
'numStocks': data['numStocks'],
|
||||
'totalMarketCap': data['totalMarketCap'],
|
||||
'pe': round((data['totalMarketCap'] / data['totalNetIncome']),2) if data['totalNetIncome'] > 0 else None,
|
||||
'avgDividendYield': round((data['totalDividendYield'] / data['dividendCount']),2) if data['dividendCount'] > 0 else None,
|
||||
'profitMargin': round((data['totalNetIncome'] / data['totalRevenue'])*100,2) if data['totalRevenue'] > 0 else None,
|
||||
'avgChange1M': round((data['totalChange1M'] / data['change1MCount']),2) if data['change1MCount'] > 0 else None,
|
||||
'avgChange1Y': round((data['totalChange1Y'] / data['change1YCount']),2) if data['change1YCount'] > 0 else None
|
||||
} for industry, data in sorted_industries
|
||||
]
|
||||
|
||||
print(result)
|
||||
|
||||
save_as_json(result)
|
||||
|
||||
|
||||
run()
|
||||
28
app/main.py
28
app/main.py
@ -3607,6 +3607,34 @@ async def get_economic_indicator(api_key: str = Security(get_api_key)):
|
||||
headers={"Content-Encoding": "gzip"}
|
||||
)
|
||||
|
||||
@app.get("/industry-overview")
|
||||
async def get_industry_overview(api_key: str = Security(get_api_key)):
|
||||
cache_key = f"industry_overview"
|
||||
cached_result = redis_client.get(cache_key)
|
||||
if cached_result:
|
||||
return StreamingResponse(
|
||||
io.BytesIO(cached_result),
|
||||
media_type="application/json",
|
||||
headers={"Content-Encoding": "gzip"}
|
||||
)
|
||||
try:
|
||||
with open(f"json/industry/overview.json", 'rb') as file:
|
||||
res = orjson.loads(file.read())
|
||||
except:
|
||||
res = {}
|
||||
|
||||
data = orjson.dumps(res)
|
||||
compressed_data = gzip.compress(data)
|
||||
|
||||
redis_client.set(cache_key, compressed_data)
|
||||
redis_client.expire(cache_key,3600*3600)
|
||||
|
||||
return StreamingResponse(
|
||||
io.BytesIO(compressed_data),
|
||||
media_type="application/json",
|
||||
headers={"Content-Encoding": "gzip"}
|
||||
)
|
||||
|
||||
@app.post("/next-earnings")
|
||||
async def get_next_earnings(data:TickerData, api_key: str = Security(get_api_key)):
|
||||
ticker = data.ticker
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user