update metrics cron job
This commit is contained in:
parent
160bd8f122
commit
7df28cd8f9
@ -1,76 +1,340 @@
|
||||
from edgar import *
|
||||
import ast
|
||||
import ujson
|
||||
from tqdm import tqdm
|
||||
from datetime import datetime
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
#Tell the SEC who you are
|
||||
set_identity("Max Mustermann max.mustermann@indigo.com")
|
||||
|
||||
|
||||
# Define quarter-end dates for a given year
|
||||
#The last quarter Q4 result is not shown in any sec files
|
||||
#But using the https://www.sec.gov/Archives/edgar/data/1045810/000104581024000029/nvda-20240128.htm 10-K you see the annual end result which can be subtracted with all Quarter results to obtain Q4 (dumb af but works so don't judge me people)
|
||||
|
||||
|
||||
def add_value_growth(data):
|
||||
"""
|
||||
Adds a new key 'valueGrowth' to each entry in the data list.
|
||||
|
||||
Parameters:
|
||||
- data (list): A list of dictionaries containing date and value lists.
|
||||
|
||||
Returns:
|
||||
- list: A new list with the 'valueGrowth' key added to each dictionary.
|
||||
"""
|
||||
# Initialize a new list for the output data
|
||||
updated_data = []
|
||||
|
||||
# Loop through the data from the latest to the oldest
|
||||
for i in range(len(data)):
|
||||
try:
|
||||
current_entry = data[i].copy() # Create a copy of the current entry
|
||||
current_values = current_entry['value']
|
||||
|
||||
# Initialize the growth percentages list
|
||||
if i < len(data) - 1: # Only compute growth if there is a next entry
|
||||
next_values = data[i + 1]['value']
|
||||
growth_percentages = []
|
||||
|
||||
for j in range(len(current_values)):
|
||||
# Convert values to integers if they are strings
|
||||
next_value = int(next_values[j]) if isinstance(next_values[j], (int, str)) else 0
|
||||
current_value = int(current_values[j]) if isinstance(current_values[j], (int, str)) else 0
|
||||
|
||||
# Calculate growth percentage if next_value is not zero
|
||||
if next_value != 0:
|
||||
growth = round(((current_value - next_value) / next_value) * 100,2)
|
||||
else:
|
||||
growth = None # Cannot calculate growth if next value is zero
|
||||
|
||||
growth_percentages.append(growth)
|
||||
|
||||
current_entry['valueGrowth'] = growth_percentages # Add the growth percentages
|
||||
else:
|
||||
current_entry['valueGrowth'] = [None] * len(current_values) # No growth for the last entry
|
||||
|
||||
updated_data.append(current_entry) # Append the updated entry to the output list
|
||||
except:
|
||||
pass
|
||||
|
||||
return updated_data
|
||||
|
||||
def sort_by_latest_date_and_highest_value(data):
|
||||
# Define a key function to convert the date string to a datetime object
|
||||
# and use the negative of the integer value for descending order
|
||||
def sort_key(item):
|
||||
date = datetime.strptime(item['date'], '%Y-%m-%d')
|
||||
value = -int(item['value']) # Negative for descending order
|
||||
return (date, value)
|
||||
|
||||
# Sort the list
|
||||
sorted_data = sorted(data, key=sort_key, reverse=True)
|
||||
|
||||
return sorted_data
|
||||
|
||||
def aggregate_other_values(data):
|
||||
aggregated = defaultdict(int)
|
||||
result = []
|
||||
|
||||
# First pass: aggregate 'Other' values and keep non-'Other' items
|
||||
for item in data:
|
||||
date = item['date']
|
||||
value = int(item['value'])
|
||||
if item['name'] == 'Other':
|
||||
aggregated[date] += value
|
||||
else:
|
||||
result.append(item)
|
||||
|
||||
# Second pass: add aggregated 'Other' values
|
||||
for date, value in aggregated.items():
|
||||
result.append({'name': 'Other', 'value': int(value), 'date': date})
|
||||
|
||||
return sorted(result, key=lambda x: (x['date'], x['name']))
|
||||
|
||||
# Define quarter-end dates for a given year
|
||||
def closest_quarter_end(date_str):
|
||||
date = datetime.strptime(date_str, "%Y-%m-%d")
|
||||
year = date.year
|
||||
|
||||
# Define quarter end dates for the year
|
||||
# Define quarter end dates for the current year
|
||||
q1 = datetime(year, 3, 31)
|
||||
q2 = datetime(year, 6, 30)
|
||||
q3 = datetime(year, 9, 30)
|
||||
q4 = datetime(year, 12, 31)
|
||||
|
||||
# Find the closest quarter date
|
||||
closest = min([q1, q2, q3, q4], key=lambda d: abs(d - date))
|
||||
|
||||
|
||||
# If the date is in January, return the last day of Q4 of the previous year
|
||||
if date.month == 1:
|
||||
closest = datetime(year - 1, 12, 31) # Last quarter of the previous year
|
||||
else:
|
||||
# Adjust to next year's Q4 if the date is in the last quarter of the current year
|
||||
if date >= q4:
|
||||
closest = q4.replace(year=year + 1) # Next year's last quarter
|
||||
else:
|
||||
# Find the closest quarter date
|
||||
closest = min([q1, q2, q3, q4], key=lambda d: abs(d - date))
|
||||
|
||||
# Return the closest quarter date in 'YYYY-MM-DD' format
|
||||
return closest.strftime("%Y-%m-%d")
|
||||
|
||||
# Tell the SEC who you are
|
||||
set_identity("Michael Mccallum mike.mccalum@indigo.com")
|
||||
|
||||
symbol = 'NVDA'
|
||||
revenue_sources = []
|
||||
geography_sources = []
|
||||
filings = Company(symbol).get_filings(form=["10-K","10-Q"]).latest(50)
|
||||
#print(filings[0].xbrl())
|
||||
|
||||
for i in range(0,17):
|
||||
try:
|
||||
filing_xbrl = filings[i].xbrl()
|
||||
facts = filing_xbrl.facts.data
|
||||
latest_rows = facts.groupby('dimensions').head(1)
|
||||
|
||||
|
||||
for index, row in latest_rows.iterrows():
|
||||
dimensions_str = row.get("dimensions", "{}")
|
||||
try:
|
||||
dimensions_dict = ast.literal_eval(dimensions_str) if isinstance(dimensions_str, str) else dimensions_str
|
||||
except (ValueError, SyntaxError):
|
||||
dimensions_dict = {}
|
||||
def compute_q4_results(dataset):
|
||||
# Group data by year and name
|
||||
yearly_data = defaultdict(lambda: defaultdict(dict))
|
||||
for item in dataset:
|
||||
date = datetime.strptime(item['date'], '%Y-%m-%d')
|
||||
year = date.year
|
||||
quarter = (date.month - 1) // 3 + 1
|
||||
yearly_data[year][item['name']][quarter] = item['value']
|
||||
|
||||
for column_name in ["srt:StatementGeographicalAxis","srt:ProductOrServiceAxis"]:
|
||||
|
||||
product_dimension = dimensions_dict.get(column_name) if isinstance(dimensions_dict, dict) else None
|
||||
#print(product_dimension)
|
||||
#print(row["namespace"], row["fact"], product_dimension, row["value"])
|
||||
# Calculate Q4 results and update dataset
|
||||
for year in sorted(yearly_data.keys(), reverse=True):
|
||||
for name, quarters in yearly_data[year].items():
|
||||
if 4 in quarters: # This is the year-end total
|
||||
total = quarters[4]
|
||||
q1 = quarters.get(1, 0)
|
||||
q2 = quarters.get(2, 0)
|
||||
q3 = quarters.get(3, 0)
|
||||
q4_value = total - (q1 + q2 + q3)
|
||||
|
||||
if column_name == "srt:ProductOrServiceAxis":
|
||||
if row["namespace"] == "us-gaap" and product_dimension is not None and (product_dimension.startswith(symbol.lower() + ":") or product_dimension.startswith('country' + ":")):
|
||||
revenue_sources.append({
|
||||
"name": product_dimension.replace("Member", "").replace(f"{symbol.lower()}:", ""),
|
||||
"value": row["value"], "date": row["end_date"]
|
||||
})
|
||||
# Update the original dataset
|
||||
for item in dataset:
|
||||
if item['name'] == name and item['date'] == f'{year}-12-31':
|
||||
item['value'] = q4_value
|
||||
break
|
||||
|
||||
else:
|
||||
if row["namespace"] == "us-gaap" and product_dimension is not None and (product_dimension.startswith(symbol.lower() + ":") or product_dimension.startswith('country' + ":")):
|
||||
geography_sources.append({
|
||||
"name": product_dimension.replace("Member", "").replace(f"{symbol.lower()}:", ""),
|
||||
"value": row["value"], "date": row["end_date"]
|
||||
})
|
||||
return dataset
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
def generate_revenue_dataset(dataset):
|
||||
name_replacements = {
|
||||
"datacenter": "Data Center",
|
||||
"professionalvisualization": "Visualization",
|
||||
"oemandother": "OEM & Other",
|
||||
"automotive": "Automotive",
|
||||
"oemip": "OEM & Other",
|
||||
"gaming": "Gaming"
|
||||
}
|
||||
dataset = [revenue for revenue in dataset if revenue['name'] not in ['Compute', 'Networking']]
|
||||
|
||||
|
||||
#print(revenue_sources)
|
||||
print(geography_sources)
|
||||
for item in dataset:
|
||||
item['date'] = closest_quarter_end(item['date'])
|
||||
|
||||
name = item.get('name').lower()
|
||||
value = int(item.get('value'))
|
||||
if name in name_replacements:
|
||||
item['name'] = name_replacements[name]
|
||||
item['value'] = int(value)
|
||||
|
||||
# Custom order for specific countries
|
||||
custom_order = {
|
||||
'Data Center': 4,
|
||||
'Gaming': 3,
|
||||
'Visualization': 2,
|
||||
'Automotive': 1,
|
||||
'OEM & Other': 0
|
||||
}
|
||||
|
||||
dataset = sorted(
|
||||
dataset,
|
||||
key=lambda item: (datetime.strptime(item['date'], '%Y-%m-%d'), custom_order.get(item['name'], 4)),
|
||||
reverse = True
|
||||
)
|
||||
|
||||
dataset = compute_q4_results(dataset)
|
||||
unique_names = sorted(
|
||||
list(set(item['name'] for item in dataset if item['name'] not in {'CloudServiceAgreements'})),
|
||||
key=lambda item: custom_order.get(item, 4), # Use 4 as default for items not in custom_order
|
||||
reverse=True)
|
||||
|
||||
result = {}
|
||||
|
||||
# Iterate through the original data
|
||||
for item in dataset:
|
||||
# Get the date and value
|
||||
date = item['date']
|
||||
value = item['value']
|
||||
|
||||
# Initialize the dictionary for the date if not already done
|
||||
if date not in result:
|
||||
result[date] = {'date': date, 'value': []}
|
||||
|
||||
# Append the value to the list
|
||||
result[date]['value'].append(value)
|
||||
|
||||
# Convert the result dictionary to a list
|
||||
res_list = list(result.values())
|
||||
|
||||
# Print the final result
|
||||
res_list = add_value_growth(res_list)
|
||||
|
||||
final_result = {'names': unique_names, 'history': res_list}
|
||||
return final_result
|
||||
|
||||
def generate_geography_dataset(dataset):
|
||||
|
||||
country_replacements = {
|
||||
"country:us": "United States",
|
||||
"country:cn": "China",
|
||||
"chinaincludinghongkong": "China"
|
||||
}
|
||||
|
||||
# Custom order for specific countries
|
||||
custom_order = {
|
||||
'United States': 2,
|
||||
'China': 1,
|
||||
'Other': 0
|
||||
}
|
||||
|
||||
for item in dataset:
|
||||
item['date'] = closest_quarter_end(item['date'])
|
||||
name = item.get('name').lower()
|
||||
value = int(float(item.get('value')))
|
||||
if name in country_replacements:
|
||||
item['name'] = country_replacements[name]
|
||||
item['value'] = value
|
||||
else:
|
||||
item['name'] = 'Other'
|
||||
item['value'] = value
|
||||
|
||||
dataset = aggregate_other_values(dataset)
|
||||
dataset = sorted(
|
||||
dataset,
|
||||
key=lambda item: (datetime.strptime(item['date'], '%Y-%m-%d'), custom_order.get(item['name'], 3)),
|
||||
reverse = True
|
||||
)
|
||||
|
||||
dataset = compute_q4_results(dataset)
|
||||
result = {}
|
||||
|
||||
unique_names = sorted(
|
||||
list(set(item['name'] for item in dataset if item['name'] not in {'CloudServiceAgreements'})),
|
||||
key=lambda item: custom_order.get(item, 4), # Use 4 as default for items not in custom_order
|
||||
reverse=True)
|
||||
|
||||
result = {}
|
||||
|
||||
# Iterate through the original data
|
||||
for item in dataset:
|
||||
# Get the date and value
|
||||
date = item['date']
|
||||
value = item['value']
|
||||
|
||||
# Initialize the dictionary for the date if not already done
|
||||
if date not in result:
|
||||
result[date] = {'date': date, 'value': []}
|
||||
|
||||
# Append the value to the list
|
||||
result[date]['value'].append(value)
|
||||
|
||||
# Convert the result dictionary to a list
|
||||
res_list = list(result.values())
|
||||
|
||||
# Print the final result
|
||||
res_list = add_value_growth(res_list)
|
||||
|
||||
final_result = {'names': unique_names, 'history': res_list}
|
||||
return final_result
|
||||
|
||||
|
||||
def run(symbol):
|
||||
|
||||
revenue_sources = []
|
||||
geography_sources = []
|
||||
filings = Company(symbol).get_filings(form=["10-K","10-Q"]).latest(20)
|
||||
#print(filings[0].xbrl())
|
||||
|
||||
for i in range(0,17):
|
||||
try:
|
||||
filing_xbrl = filings[i].xbrl()
|
||||
facts = filing_xbrl.facts.data
|
||||
latest_rows = facts.groupby('dimensions').head(1)
|
||||
|
||||
|
||||
for index, row in latest_rows.iterrows():
|
||||
dimensions_str = row.get("dimensions", "{}")
|
||||
try:
|
||||
dimensions_dict = ast.literal_eval(dimensions_str) if isinstance(dimensions_str, str) else dimensions_str
|
||||
except (ValueError, SyntaxError):
|
||||
dimensions_dict = {}
|
||||
|
||||
for column_name in ["srt:StatementGeographicalAxis","srt:ProductOrServiceAxis"]:
|
||||
|
||||
product_dimension = dimensions_dict.get(column_name) if isinstance(dimensions_dict, dict) else None
|
||||
#print(product_dimension)
|
||||
#print(row["namespace"], row["fact"], product_dimension, row["value"])
|
||||
|
||||
if column_name == "srt:ProductOrServiceAxis":
|
||||
if row["namespace"] == "us-gaap" and product_dimension is not None and (product_dimension.startswith(symbol.lower() + ":") or product_dimension.startswith('country' + ":")):
|
||||
revenue_sources.append({
|
||||
"name": product_dimension.replace("Member", "").replace(f"{symbol.lower()}:", ""),
|
||||
"value": row["value"], "date": row["end_date"]
|
||||
})
|
||||
|
||||
else:
|
||||
if row["namespace"] == "us-gaap" and product_dimension is not None and (product_dimension.startswith(symbol.lower() + ":") or product_dimension.startswith('country' + ":")):
|
||||
geography_sources.append({
|
||||
"name": product_dimension.replace("Member", "").replace(f"{symbol.lower()}:", ""),
|
||||
"value": row["value"], "date": row["end_date"]
|
||||
})
|
||||
|
||||
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
revenue_dataset = generate_revenue_dataset(revenue_sources)
|
||||
geographic_dataset = generate_geography_dataset(geography_sources)
|
||||
|
||||
final_dataset = {'revenue': revenue_dataset, 'geographic': geographic_dataset}
|
||||
print(final_dataset)
|
||||
with open(f"json/business-metrics/{symbol}.json", "w") as file:
|
||||
ujson.dump(final_dataset, file)
|
||||
|
||||
if __name__ == "__main__":
|
||||
symbol = 'NVDA'
|
||||
run(symbol)
|
||||
|
||||
|
||||
29
app/main.py
29
app/main.py
@ -4054,6 +4054,35 @@ async def get_fomc_impact(api_key: str = Security(get_api_key)):
|
||||
headers={"Content-Encoding": "gzip"}
|
||||
)
|
||||
|
||||
@app.post("/business-metrics")
|
||||
async def get_fomc_impact(data: TickerData, api_key: str = Security(get_api_key)):
|
||||
ticker = data.ticker
|
||||
cache_key = f"business-metrics-{ticker}"
|
||||
cached_result = redis_client.get(cache_key)
|
||||
if cached_result:
|
||||
return StreamingResponse(
|
||||
io.BytesIO(cached_result),
|
||||
media_type="application/json",
|
||||
headers={"Content-Encoding": "gzip"}
|
||||
)
|
||||
try:
|
||||
with open(f"json/business-metrics/{ticker}.json", 'rb') as file:
|
||||
res = orjson.loads(file.read())
|
||||
except:
|
||||
res = {}
|
||||
|
||||
data = orjson.dumps(res)
|
||||
compressed_data = gzip.compress(data)
|
||||
|
||||
redis_client.set(cache_key, compressed_data)
|
||||
redis_client.expire(cache_key,3600*3600)
|
||||
|
||||
return StreamingResponse(
|
||||
io.BytesIO(compressed_data),
|
||||
media_type="application/json",
|
||||
headers={"Content-Encoding": "gzip"}
|
||||
)
|
||||
|
||||
@app.get("/newsletter")
|
||||
async def get_newsletter():
|
||||
try:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user