update market flow
This commit is contained in:
parent
4362087b03
commit
82360fa11c
@ -23,10 +23,10 @@ ny_tz = pytz.timezone('America/New_York')
|
||||
|
||||
|
||||
|
||||
def save_json(data):
|
||||
def save_json(data, filename):
|
||||
directory = "json/market-flow"
|
||||
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
|
||||
with open(f"{directory}/data.json", 'wb') as file: # Use binary mode for orjson
|
||||
with open(f"{directory}/{filename}.json", 'wb') as file: # Use binary mode for orjson
|
||||
file.write(orjson.dumps(data))
|
||||
|
||||
|
||||
@ -67,10 +67,18 @@ async def get_stock_chart_data(ticker):
|
||||
|
||||
|
||||
|
||||
def get_market_tide(interval_5m=True):
|
||||
|
||||
def get_market_tide(interval_1m=True):
|
||||
res_list = []
|
||||
|
||||
# Track changes per interval using a defaultdict.
|
||||
# Load the options flow JSON data only once.
|
||||
with open("json/options-flow/feed/data.json", "r") as file:
|
||||
all_data = orjson.loads(file.read())
|
||||
|
||||
# We're processing SPY (the market tide) – if needed you could expand this list.
|
||||
tickers = ['SPY']
|
||||
|
||||
# Use a single dictionary to track cumulative flows.
|
||||
delta_data = defaultdict(lambda: {
|
||||
'cumulative_net_call_premium': 0,
|
||||
'cumulative_net_put_premium': 0,
|
||||
@ -80,26 +88,18 @@ def get_market_tide(interval_5m=True):
|
||||
'put_bid_vol': 0
|
||||
})
|
||||
|
||||
# Process for each ticker (in this case only 'SPY')
|
||||
for ticker in tqdm(['SPY']):
|
||||
# Load the data from JSON.
|
||||
with open("json/options-flow/feed/data.json", "r") as file:
|
||||
data = orjson.loads(file.read())
|
||||
|
||||
# Filter and sort data for the given ticker.
|
||||
data = [item for item in data if item['ticker'] == ticker]
|
||||
# Process each ticker.
|
||||
for ticker in tqdm(tickers):
|
||||
# Filter and sort the data for the current ticker.
|
||||
data = [item for item in all_data if item['ticker'] == ticker]
|
||||
data.sort(key=lambda x: x['time'])
|
||||
# Process each item in the data
|
||||
for item in data:
|
||||
try:
|
||||
# Combine date and time from the item.
|
||||
# Combine date and time, then truncate to the start of the minute.
|
||||
dt = datetime.strptime(f"{item['date']} {item['time']}", "%Y-%m-%d %H:%M:%S")
|
||||
# Truncate to the start of the minute.
|
||||
dt = dt.replace(second=0, microsecond=0)
|
||||
|
||||
# Adjust for 5-minute intervals if requested.
|
||||
if interval_5m:
|
||||
# Round down minutes to the nearest 5-minute mark.
|
||||
if interval_1m:
|
||||
minute = dt.minute - (dt.minute % 1)
|
||||
dt = dt.replace(minute=minute)
|
||||
|
||||
@ -130,78 +130,205 @@ def get_market_tide(interval_5m=True):
|
||||
except Exception as e:
|
||||
print(f"Error processing item: {e}")
|
||||
|
||||
# Calculate cumulative values over time.
|
||||
sorted_ts = sorted(delta_data.keys())
|
||||
cumulative = {
|
||||
'net_call_premium': 0,
|
||||
'net_put_premium': 0,
|
||||
'call_ask': 0,
|
||||
'call_bid': 0,
|
||||
'put_ask': 0,
|
||||
'put_bid': 0
|
||||
}
|
||||
# Calculate cumulative values over time.
|
||||
sorted_ts = sorted(delta_data.keys())
|
||||
cumulative = {
|
||||
'net_call_premium': 0,
|
||||
'net_put_premium': 0,
|
||||
'call_ask': 0,
|
||||
'call_bid': 0,
|
||||
'put_ask': 0,
|
||||
'put_bid': 0
|
||||
}
|
||||
|
||||
for ts in sorted_ts:
|
||||
# Update cumulative values.
|
||||
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
|
||||
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
|
||||
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
|
||||
cumulative['call_bid'] += delta_data[ts]['call_bid_vol']
|
||||
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
|
||||
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
|
||||
for ts in sorted_ts:
|
||||
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
|
||||
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
|
||||
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
|
||||
cumulative['call_bid'] += delta_data[ts]['call_bid_vol']
|
||||
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
|
||||
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
|
||||
|
||||
# Calculate derived metrics.
|
||||
call_volume = cumulative['call_ask'] + cumulative['call_bid']
|
||||
put_volume = cumulative['put_ask'] + cumulative['put_bid']
|
||||
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - (cumulative['put_ask'] - cumulative['put_bid'])
|
||||
call_volume = cumulative['call_ask'] + cumulative['call_bid']
|
||||
put_volume = cumulative['put_ask'] + cumulative['put_bid']
|
||||
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - (cumulative['put_ask'] - cumulative['put_bid'])
|
||||
|
||||
res_list.append({
|
||||
'time': ts,
|
||||
'ticker': ticker,
|
||||
'net_call_premium': round(cumulative['net_call_premium']),
|
||||
'net_put_premium': round(cumulative['net_put_premium']),
|
||||
'call_volume': round(call_volume),
|
||||
'put_volume': round(put_volume),
|
||||
'net_volume': round(net_volume),
|
||||
})
|
||||
res_list.append({
|
||||
'time': ts,
|
||||
'ticker': ticker,
|
||||
'net_call_premium': round(cumulative['net_call_premium']),
|
||||
'net_put_premium': round(cumulative['net_put_premium']),
|
||||
'call_volume': round(call_volume),
|
||||
'put_volume': round(put_volume),
|
||||
'net_volume': round(net_volume),
|
||||
})
|
||||
|
||||
# Sort the results list by time.
|
||||
res_list.sort(key=lambda x: x['time'])
|
||||
|
||||
# Retrieve price list data (either via asyncio or from file as a fallback).
|
||||
# Retrieve SPY price list data (using asyncio or fallback to local file).
|
||||
price_list = asyncio.run(get_stock_chart_data('SPY'))
|
||||
if len(price_list) == 0:
|
||||
with open("json/one-day-price/SPY.json", "r") as file:
|
||||
price_list = orjson.loads(file.read())
|
||||
|
||||
# Append closing prices to the market tide data.
|
||||
data_with_close = add_close_to_data(price_list, res_list)
|
||||
|
||||
# Ensure that every minute until 16:05 is present in the data.
|
||||
fields = ['net_call_premium', 'net_put_premium', 'call_volume', 'put_volume', 'net_volume', 'close']
|
||||
last_time = datetime.strptime(data_with_close[-1]['time'], "%Y-%m-%d %H:%M:%S")
|
||||
end_time = last_time.replace(hour=16, minute=5, second=0)
|
||||
|
||||
while last_time < end_time:
|
||||
last_time += timedelta(minutes=1)
|
||||
data_with_close.append({
|
||||
'time': last_time.strftime("%Y-%m-%d %H:%M:%S"),
|
||||
'ticker': 'SPY',
|
||||
**{field: None for field in fields}
|
||||
})
|
||||
|
||||
return data_with_close
|
||||
|
||||
|
||||
|
||||
def get_sector_data(sector_ticker,interval_1m=True):
|
||||
res_list = []
|
||||
|
||||
# Load the options flow data.
|
||||
with open("json/options-flow/feed/data.json", "r") as file:
|
||||
all_data = orjson.loads(file.read())
|
||||
|
||||
# Load ETF holdings data and extract ticker weights.
|
||||
with open(f"json/etf/holding/{sector_ticker}.json", "r") as file:
|
||||
holdings_data = orjson.loads(file.read())
|
||||
# Build a dictionary mapping ticker symbols to their weightPercentage.
|
||||
ticker_weights = {item['symbol']: item['weightPercentage'] for item in holdings_data['holdings']}
|
||||
|
||||
# Use a common dictionary to accumulate flows across all tickers.
|
||||
delta_data = defaultdict(lambda: {
|
||||
'cumulative_net_call_premium': 0,
|
||||
'cumulative_net_put_premium': 0,
|
||||
'call_ask_vol': 0,
|
||||
'call_bid_vol': 0,
|
||||
'put_ask_vol': 0,
|
||||
'put_bid_vol': 0
|
||||
})
|
||||
|
||||
# Process each ticker's data using its weight.
|
||||
for ticker in tqdm(ticker_weights.keys()):
|
||||
# Convert the weight percentage to a fraction.
|
||||
weight = 1 #ticker_weights[ticker] / 100.0 #ignore weights of sector
|
||||
# Filter data for the current ticker.
|
||||
ticker_data = [item for item in all_data if item.get('ticker') == ticker]
|
||||
ticker_data.sort(key=lambda x: x['time'])
|
||||
|
||||
for item in ticker_data:
|
||||
try:
|
||||
# Combine date and time, then truncate seconds and microseconds.
|
||||
dt = datetime.strptime(f"{item['date']} {item['time']}", "%Y-%m-%d %H:%M:%S")
|
||||
dt = dt.replace(second=0, microsecond=0)
|
||||
|
||||
# Adjust to the start of the minute if using 1-minute intervals.
|
||||
if interval_1m:
|
||||
minute = dt.minute - (dt.minute % 1)
|
||||
dt = dt.replace(minute=minute)
|
||||
|
||||
rounded_ts = dt.strftime("%Y-%m-%d %H:%M:%S")
|
||||
|
||||
# Extract metrics.
|
||||
cost = float(item.get("cost_basis", 0))
|
||||
sentiment = item.get("sentiment", "")
|
||||
put_call = item.get("put_call", "")
|
||||
vol = int(item.get("volume", 0))
|
||||
|
||||
# Update metrics, scaled by the ticker's weight.
|
||||
if put_call == "Calls":
|
||||
if sentiment == "Bullish":
|
||||
delta_data[rounded_ts]['cumulative_net_call_premium'] += cost * weight
|
||||
delta_data[rounded_ts]['call_ask_vol'] += vol * weight
|
||||
elif sentiment == "Bearish":
|
||||
delta_data[rounded_ts]['cumulative_net_call_premium'] -= cost * weight
|
||||
delta_data[rounded_ts]['call_bid_vol'] += vol * weight
|
||||
elif put_call == "Puts":
|
||||
if sentiment == "Bullish":
|
||||
delta_data[rounded_ts]['cumulative_net_put_premium'] += cost * weight
|
||||
delta_data[rounded_ts]['put_ask_vol'] += vol * weight
|
||||
elif sentiment == "Bearish":
|
||||
delta_data[rounded_ts]['cumulative_net_put_premium'] -= cost * weight
|
||||
delta_data[rounded_ts]['put_bid_vol'] += vol * weight
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error processing item: {e}")
|
||||
|
||||
# Calculate cumulative values over time.
|
||||
sorted_ts = sorted(delta_data.keys())
|
||||
cumulative = {
|
||||
'net_call_premium': 0,
|
||||
'net_put_premium': 0,
|
||||
'call_ask': 0,
|
||||
'call_bid': 0,
|
||||
'put_ask': 0,
|
||||
'put_bid': 0
|
||||
}
|
||||
|
||||
for ts in sorted_ts:
|
||||
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
|
||||
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
|
||||
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
|
||||
cumulative['call_bid'] += delta_data[ts]['call_bid_vol']
|
||||
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
|
||||
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
|
||||
|
||||
call_volume = cumulative['call_ask'] + cumulative['call_bid']
|
||||
put_volume = cumulative['put_ask'] + cumulative['put_bid']
|
||||
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - (cumulative['put_ask'] - cumulative['put_bid'])
|
||||
|
||||
res_list.append({
|
||||
'time': ts,
|
||||
'net_call_premium': round(cumulative['net_call_premium']),
|
||||
'net_put_premium': round(cumulative['net_put_premium']),
|
||||
'call_volume': round(call_volume),
|
||||
'put_volume': round(put_volume),
|
||||
'net_volume': round(net_volume),
|
||||
})
|
||||
|
||||
# Sort the results list by time.
|
||||
res_list.sort(key=lambda x: x['time'])
|
||||
|
||||
# Get the price list for the sector ticker.
|
||||
price_list = asyncio.run(get_stock_chart_data(sector_ticker))
|
||||
if len(price_list) == 0:
|
||||
with open(f"json/one-day-price/{sector_ticker}.json", "r") as file:
|
||||
price_list = orjson.loads(file.read())
|
||||
|
||||
# Append closing prices to the data.
|
||||
data = add_close_to_data(price_list, res_list)
|
||||
|
||||
# Ensure that each minute until 16:10:00 is present in the data.
|
||||
|
||||
# Ensure that each minute until the specified end time (e.g., 16:01:00) is present.
|
||||
fields = ['net_call_premium', 'net_put_premium', 'call_volume', 'put_volume', 'net_volume', 'close']
|
||||
last_time = datetime.strptime(data[-1]['time'], "%Y-%m-%d %H:%M:%S")
|
||||
end_time = last_time.replace(hour=16, minute=5, second=0)
|
||||
end_time = last_time.replace(hour=16, minute=1, second=0)
|
||||
|
||||
while last_time < end_time:
|
||||
last_time += timedelta(minutes=1)
|
||||
data.append({
|
||||
'time': last_time.strftime("%Y-%m-%d %H:%M:%S"),
|
||||
'ticker': ticker,
|
||||
**{field: None for field in fields}
|
||||
})
|
||||
|
||||
|
||||
return data
|
||||
|
||||
|
||||
|
||||
def get_top_spy_tickers():
|
||||
with open(f"json/stocks-list/sp500_constituent.json", "r") as file:
|
||||
data = orjson.loads(file.read())
|
||||
def get_top_tickers(sector_ticker):
|
||||
with open(f"json/etf/holding/{sector_ticker}.json", "r") as file:
|
||||
holdings_data = orjson.loads(file.read())
|
||||
# Build a dictionary mapping ticker symbols to their weightPercentage.
|
||||
data = [item['symbol'] for item in holdings_data['holdings']]
|
||||
|
||||
res_list = []
|
||||
for item in data:
|
||||
for symbol in data:
|
||||
try:
|
||||
symbol = item['symbol']
|
||||
with open(f"json/options-stats/companies/{symbol}.json","r") as file:
|
||||
stats_data = orjson.loads(file.read())
|
||||
|
||||
@ -230,27 +357,51 @@ def get_top_spy_tickers():
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
top_sector_tickers = {}
|
||||
|
||||
market_tide = get_market_tide()
|
||||
top_spy_tickers = get_top_spy_tickers()
|
||||
top_neg_spy_tickers = sorted(get_top_spy_tickers(), key=lambda item: item['net_premium'])
|
||||
for rank, item in enumerate(top_neg_spy_tickers, 1):
|
||||
def get_market_flow():
|
||||
market_tide = get_sector_data(sector_ticker="SPY") #get_market_tide()
|
||||
top_pos_tickers = get_top_tickers(sector_ticker="SPY")
|
||||
top_neg_tickers = sorted(get_top_tickers(sector_ticker="SPY"), key=lambda item: item['net_premium'])
|
||||
for rank, item in enumerate(top_neg_tickers, 1):
|
||||
item['rank'] = rank
|
||||
|
||||
data = {'marketTide': market_tide, 'topPosNetPremium': top_spy_tickers[:10], 'topNegNetPremium': top_neg_spy_tickers[:10]}
|
||||
data = {'marketTide': market_tide, 'topPosNetPremium': top_pos_tickers[:10], 'topNegNetPremium': top_neg_tickers[:10]}
|
||||
if data:
|
||||
save_json(data, 'overview')
|
||||
|
||||
|
||||
def get_sector_flow():
|
||||
sector_dict = {}
|
||||
top_pos_tickers_dict = {}
|
||||
top_neg_tickers_dict = {}
|
||||
|
||||
for sector_ticker in ["XLB", "XLC", "XLY", "XLP", "XLE", "XLF", "XLV", "XLI", "XLRE", "XLK", "XLU"]:
|
||||
sector_data = get_sector_data(sector_ticker=sector_ticker)
|
||||
top_pos_tickers = get_top_tickers(sector_ticker=sector_ticker)
|
||||
top_neg_tickers = sorted(top_pos_tickers, key=lambda item: item['net_premium'])
|
||||
|
||||
for rank, item in enumerate(top_neg_tickers, 1):
|
||||
item['rank'] = rank
|
||||
|
||||
sector_dict[sector_ticker] = sector_data
|
||||
top_pos_tickers_dict[sector_ticker] = top_pos_tickers[:10]
|
||||
top_neg_tickers_dict[sector_ticker] = top_neg_tickers[:10]
|
||||
|
||||
|
||||
data = {
|
||||
'sectorFlow': sector_dict,
|
||||
'topPosNetPremium': top_pos_tickers_dict,
|
||||
'topNegNetPremium': top_neg_tickers_dict
|
||||
}
|
||||
|
||||
if data:
|
||||
save_json(data)
|
||||
save_json(data, 'sector')
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
get_market_flow()
|
||||
get_sector_flow()
|
||||
|
||||
'''
|
||||
sector_data = get_sector_data()
|
||||
top_sector_tickers = get_top_sector_tickers()
|
||||
top_spy_tickers = get_top_spy_tickers()
|
||||
top_sector_tickers['SPY'] = top_spy_tickers
|
||||
data = {'sectorData': sector_data, 'topSectorTickers': top_sector_tickers, 'marketTide': market_tide}
|
||||
'''
|
||||
|
||||
|
||||
|
||||
|
||||
31
app/main.py
31
app/main.py
@ -4041,7 +4041,36 @@ async def get_market_flow(api_key: str = Security(get_api_key)):
|
||||
)
|
||||
|
||||
try:
|
||||
with open(f"json/market-flow/data.json", 'rb') as file:
|
||||
with open(f"json/market-flow/overview.json", 'rb') as file:
|
||||
res = orjson.loads(file.read())
|
||||
except:
|
||||
res = {}
|
||||
|
||||
data = orjson.dumps(res)
|
||||
compressed_data = gzip.compress(data)
|
||||
|
||||
redis_client.set(cache_key, compressed_data)
|
||||
redis_client.expire(cache_key,2*60)
|
||||
|
||||
return StreamingResponse(
|
||||
io.BytesIO(compressed_data),
|
||||
media_type="application/json",
|
||||
headers={"Content-Encoding": "gzip"}
|
||||
)
|
||||
|
||||
@app.get("/sector-flow")
|
||||
async def get_data(api_key: str = Security(get_api_key)):
|
||||
cache_key = f"sector-flow"
|
||||
cached_result = redis_client.get(cache_key)
|
||||
if cached_result:
|
||||
return StreamingResponse(
|
||||
io.BytesIO(cached_result),
|
||||
media_type="application/json",
|
||||
headers={"Content-Encoding": "gzip"}
|
||||
)
|
||||
|
||||
try:
|
||||
with open(f"json/market-flow/sector.json", 'rb') as file:
|
||||
res = orjson.loads(file.read())
|
||||
except:
|
||||
res = {}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user