update market flow

This commit is contained in:
MuslemRahimi 2025-02-15 01:45:05 +01:00
parent 4362087b03
commit 82360fa11c
2 changed files with 258 additions and 78 deletions

View File

@ -23,10 +23,10 @@ ny_tz = pytz.timezone('America/New_York')
def save_json(data):
def save_json(data, filename):
directory = "json/market-flow"
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
with open(f"{directory}/data.json", 'wb') as file: # Use binary mode for orjson
with open(f"{directory}/{filename}.json", 'wb') as file: # Use binary mode for orjson
file.write(orjson.dumps(data))
@ -67,10 +67,18 @@ async def get_stock_chart_data(ticker):
def get_market_tide(interval_5m=True):
def get_market_tide(interval_1m=True):
res_list = []
# Track changes per interval using a defaultdict.
# Load the options flow JSON data only once.
with open("json/options-flow/feed/data.json", "r") as file:
all_data = orjson.loads(file.read())
# We're processing SPY (the market tide) if needed you could expand this list.
tickers = ['SPY']
# Use a single dictionary to track cumulative flows.
delta_data = defaultdict(lambda: {
'cumulative_net_call_premium': 0,
'cumulative_net_put_premium': 0,
@ -80,26 +88,18 @@ def get_market_tide(interval_5m=True):
'put_bid_vol': 0
})
# Process for each ticker (in this case only 'SPY')
for ticker in tqdm(['SPY']):
# Load the data from JSON.
with open("json/options-flow/feed/data.json", "r") as file:
data = orjson.loads(file.read())
# Filter and sort data for the given ticker.
data = [item for item in data if item['ticker'] == ticker]
# Process each ticker.
for ticker in tqdm(tickers):
# Filter and sort the data for the current ticker.
data = [item for item in all_data if item['ticker'] == ticker]
data.sort(key=lambda x: x['time'])
# Process each item in the data
for item in data:
try:
# Combine date and time from the item.
# Combine date and time, then truncate to the start of the minute.
dt = datetime.strptime(f"{item['date']} {item['time']}", "%Y-%m-%d %H:%M:%S")
# Truncate to the start of the minute.
dt = dt.replace(second=0, microsecond=0)
# Adjust for 5-minute intervals if requested.
if interval_5m:
# Round down minutes to the nearest 5-minute mark.
if interval_1m:
minute = dt.minute - (dt.minute % 1)
dt = dt.replace(minute=minute)
@ -130,78 +130,205 @@ def get_market_tide(interval_5m=True):
except Exception as e:
print(f"Error processing item: {e}")
# Calculate cumulative values over time.
sorted_ts = sorted(delta_data.keys())
cumulative = {
'net_call_premium': 0,
'net_put_premium': 0,
'call_ask': 0,
'call_bid': 0,
'put_ask': 0,
'put_bid': 0
}
# Calculate cumulative values over time.
sorted_ts = sorted(delta_data.keys())
cumulative = {
'net_call_premium': 0,
'net_put_premium': 0,
'call_ask': 0,
'call_bid': 0,
'put_ask': 0,
'put_bid': 0
}
for ts in sorted_ts:
# Update cumulative values.
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
cumulative['call_bid'] += delta_data[ts]['call_bid_vol']
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
for ts in sorted_ts:
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
cumulative['call_bid'] += delta_data[ts]['call_bid_vol']
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
# Calculate derived metrics.
call_volume = cumulative['call_ask'] + cumulative['call_bid']
put_volume = cumulative['put_ask'] + cumulative['put_bid']
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - (cumulative['put_ask'] - cumulative['put_bid'])
call_volume = cumulative['call_ask'] + cumulative['call_bid']
put_volume = cumulative['put_ask'] + cumulative['put_bid']
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - (cumulative['put_ask'] - cumulative['put_bid'])
res_list.append({
'time': ts,
'ticker': ticker,
'net_call_premium': round(cumulative['net_call_premium']),
'net_put_premium': round(cumulative['net_put_premium']),
'call_volume': round(call_volume),
'put_volume': round(put_volume),
'net_volume': round(net_volume),
})
res_list.append({
'time': ts,
'ticker': ticker,
'net_call_premium': round(cumulative['net_call_premium']),
'net_put_premium': round(cumulative['net_put_premium']),
'call_volume': round(call_volume),
'put_volume': round(put_volume),
'net_volume': round(net_volume),
})
# Sort the results list by time.
res_list.sort(key=lambda x: x['time'])
# Retrieve price list data (either via asyncio or from file as a fallback).
# Retrieve SPY price list data (using asyncio or fallback to local file).
price_list = asyncio.run(get_stock_chart_data('SPY'))
if len(price_list) == 0:
with open("json/one-day-price/SPY.json", "r") as file:
price_list = orjson.loads(file.read())
# Append closing prices to the market tide data.
data_with_close = add_close_to_data(price_list, res_list)
# Ensure that every minute until 16:05 is present in the data.
fields = ['net_call_premium', 'net_put_premium', 'call_volume', 'put_volume', 'net_volume', 'close']
last_time = datetime.strptime(data_with_close[-1]['time'], "%Y-%m-%d %H:%M:%S")
end_time = last_time.replace(hour=16, minute=5, second=0)
while last_time < end_time:
last_time += timedelta(minutes=1)
data_with_close.append({
'time': last_time.strftime("%Y-%m-%d %H:%M:%S"),
'ticker': 'SPY',
**{field: None for field in fields}
})
return data_with_close
def get_sector_data(sector_ticker,interval_1m=True):
res_list = []
# Load the options flow data.
with open("json/options-flow/feed/data.json", "r") as file:
all_data = orjson.loads(file.read())
# Load ETF holdings data and extract ticker weights.
with open(f"json/etf/holding/{sector_ticker}.json", "r") as file:
holdings_data = orjson.loads(file.read())
# Build a dictionary mapping ticker symbols to their weightPercentage.
ticker_weights = {item['symbol']: item['weightPercentage'] for item in holdings_data['holdings']}
# Use a common dictionary to accumulate flows across all tickers.
delta_data = defaultdict(lambda: {
'cumulative_net_call_premium': 0,
'cumulative_net_put_premium': 0,
'call_ask_vol': 0,
'call_bid_vol': 0,
'put_ask_vol': 0,
'put_bid_vol': 0
})
# Process each ticker's data using its weight.
for ticker in tqdm(ticker_weights.keys()):
# Convert the weight percentage to a fraction.
weight = 1 #ticker_weights[ticker] / 100.0 #ignore weights of sector
# Filter data for the current ticker.
ticker_data = [item for item in all_data if item.get('ticker') == ticker]
ticker_data.sort(key=lambda x: x['time'])
for item in ticker_data:
try:
# Combine date and time, then truncate seconds and microseconds.
dt = datetime.strptime(f"{item['date']} {item['time']}", "%Y-%m-%d %H:%M:%S")
dt = dt.replace(second=0, microsecond=0)
# Adjust to the start of the minute if using 1-minute intervals.
if interval_1m:
minute = dt.minute - (dt.minute % 1)
dt = dt.replace(minute=minute)
rounded_ts = dt.strftime("%Y-%m-%d %H:%M:%S")
# Extract metrics.
cost = float(item.get("cost_basis", 0))
sentiment = item.get("sentiment", "")
put_call = item.get("put_call", "")
vol = int(item.get("volume", 0))
# Update metrics, scaled by the ticker's weight.
if put_call == "Calls":
if sentiment == "Bullish":
delta_data[rounded_ts]['cumulative_net_call_premium'] += cost * weight
delta_data[rounded_ts]['call_ask_vol'] += vol * weight
elif sentiment == "Bearish":
delta_data[rounded_ts]['cumulative_net_call_premium'] -= cost * weight
delta_data[rounded_ts]['call_bid_vol'] += vol * weight
elif put_call == "Puts":
if sentiment == "Bullish":
delta_data[rounded_ts]['cumulative_net_put_premium'] += cost * weight
delta_data[rounded_ts]['put_ask_vol'] += vol * weight
elif sentiment == "Bearish":
delta_data[rounded_ts]['cumulative_net_put_premium'] -= cost * weight
delta_data[rounded_ts]['put_bid_vol'] += vol * weight
except Exception as e:
print(f"Error processing item: {e}")
# Calculate cumulative values over time.
sorted_ts = sorted(delta_data.keys())
cumulative = {
'net_call_premium': 0,
'net_put_premium': 0,
'call_ask': 0,
'call_bid': 0,
'put_ask': 0,
'put_bid': 0
}
for ts in sorted_ts:
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
cumulative['call_bid'] += delta_data[ts]['call_bid_vol']
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
call_volume = cumulative['call_ask'] + cumulative['call_bid']
put_volume = cumulative['put_ask'] + cumulative['put_bid']
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - (cumulative['put_ask'] - cumulative['put_bid'])
res_list.append({
'time': ts,
'net_call_premium': round(cumulative['net_call_premium']),
'net_put_premium': round(cumulative['net_put_premium']),
'call_volume': round(call_volume),
'put_volume': round(put_volume),
'net_volume': round(net_volume),
})
# Sort the results list by time.
res_list.sort(key=lambda x: x['time'])
# Get the price list for the sector ticker.
price_list = asyncio.run(get_stock_chart_data(sector_ticker))
if len(price_list) == 0:
with open(f"json/one-day-price/{sector_ticker}.json", "r") as file:
price_list = orjson.loads(file.read())
# Append closing prices to the data.
data = add_close_to_data(price_list, res_list)
# Ensure that each minute until 16:10:00 is present in the data.
# Ensure that each minute until the specified end time (e.g., 16:01:00) is present.
fields = ['net_call_premium', 'net_put_premium', 'call_volume', 'put_volume', 'net_volume', 'close']
last_time = datetime.strptime(data[-1]['time'], "%Y-%m-%d %H:%M:%S")
end_time = last_time.replace(hour=16, minute=5, second=0)
end_time = last_time.replace(hour=16, minute=1, second=0)
while last_time < end_time:
last_time += timedelta(minutes=1)
data.append({
'time': last_time.strftime("%Y-%m-%d %H:%M:%S"),
'ticker': ticker,
**{field: None for field in fields}
})
return data
def get_top_spy_tickers():
with open(f"json/stocks-list/sp500_constituent.json", "r") as file:
data = orjson.loads(file.read())
def get_top_tickers(sector_ticker):
with open(f"json/etf/holding/{sector_ticker}.json", "r") as file:
holdings_data = orjson.loads(file.read())
# Build a dictionary mapping ticker symbols to their weightPercentage.
data = [item['symbol'] for item in holdings_data['holdings']]
res_list = []
for item in data:
for symbol in data:
try:
symbol = item['symbol']
with open(f"json/options-stats/companies/{symbol}.json","r") as file:
stats_data = orjson.loads(file.read())
@ -230,27 +357,51 @@ def get_top_spy_tickers():
def main():
top_sector_tickers = {}
market_tide = get_market_tide()
top_spy_tickers = get_top_spy_tickers()
top_neg_spy_tickers = sorted(get_top_spy_tickers(), key=lambda item: item['net_premium'])
for rank, item in enumerate(top_neg_spy_tickers, 1):
def get_market_flow():
market_tide = get_sector_data(sector_ticker="SPY") #get_market_tide()
top_pos_tickers = get_top_tickers(sector_ticker="SPY")
top_neg_tickers = sorted(get_top_tickers(sector_ticker="SPY"), key=lambda item: item['net_premium'])
for rank, item in enumerate(top_neg_tickers, 1):
item['rank'] = rank
data = {'marketTide': market_tide, 'topPosNetPremium': top_spy_tickers[:10], 'topNegNetPremium': top_neg_spy_tickers[:10]}
data = {'marketTide': market_tide, 'topPosNetPremium': top_pos_tickers[:10], 'topNegNetPremium': top_neg_tickers[:10]}
if data:
save_json(data, 'overview')
def get_sector_flow():
sector_dict = {}
top_pos_tickers_dict = {}
top_neg_tickers_dict = {}
for sector_ticker in ["XLB", "XLC", "XLY", "XLP", "XLE", "XLF", "XLV", "XLI", "XLRE", "XLK", "XLU"]:
sector_data = get_sector_data(sector_ticker=sector_ticker)
top_pos_tickers = get_top_tickers(sector_ticker=sector_ticker)
top_neg_tickers = sorted(top_pos_tickers, key=lambda item: item['net_premium'])
for rank, item in enumerate(top_neg_tickers, 1):
item['rank'] = rank
sector_dict[sector_ticker] = sector_data
top_pos_tickers_dict[sector_ticker] = top_pos_tickers[:10]
top_neg_tickers_dict[sector_ticker] = top_neg_tickers[:10]
data = {
'sectorFlow': sector_dict,
'topPosNetPremium': top_pos_tickers_dict,
'topNegNetPremium': top_neg_tickers_dict
}
if data:
save_json(data)
save_json(data, 'sector')
def main():
get_market_flow()
get_sector_flow()
'''
sector_data = get_sector_data()
top_sector_tickers = get_top_sector_tickers()
top_spy_tickers = get_top_spy_tickers()
top_sector_tickers['SPY'] = top_spy_tickers
data = {'sectorData': sector_data, 'topSectorTickers': top_sector_tickers, 'marketTide': market_tide}
'''

View File

@ -4041,7 +4041,36 @@ async def get_market_flow(api_key: str = Security(get_api_key)):
)
try:
with open(f"json/market-flow/data.json", 'rb') as file:
with open(f"json/market-flow/overview.json", 'rb') as file:
res = orjson.loads(file.read())
except:
res = {}
data = orjson.dumps(res)
compressed_data = gzip.compress(data)
redis_client.set(cache_key, compressed_data)
redis_client.expire(cache_key,2*60)
return StreamingResponse(
io.BytesIO(compressed_data),
media_type="application/json",
headers={"Content-Encoding": "gzip"}
)
@app.get("/sector-flow")
async def get_data(api_key: str = Security(get_api_key)):
cache_key = f"sector-flow"
cached_result = redis_client.get(cache_key)
if cached_result:
return StreamingResponse(
io.BytesIO(cached_result),
media_type="application/json",
headers={"Content-Encoding": "gzip"}
)
try:
with open(f"json/market-flow/sector.json", 'rb') as file:
res = orjson.loads(file.read())
except:
res = {}