add more rules

This commit is contained in:
MuslemRahimi 2024-10-26 16:58:24 +02:00
parent 0163ecdeef
commit 9de702534f
3 changed files with 43 additions and 8 deletions

View File

@ -542,6 +542,13 @@ data = {
"sharesYoY": {
"text": "The change in the number of shares outstanding, comparing the most recent quarter to the same quarter a year ago.",
},
"floatShares": {
"text": "Float is the amount of shares that are considered available for trading. It subtracts closely held shares by insiders and restricted stock from the total number of shares outstanding."
},
"interestCoverage": {
"text": "The interest coverage ratio is a measure of the ability of a company to pay its interest expenses. It is calculated by dividing the company's Earnings Before Interest and Taxes (EBIT) by its interest expenses.",
"equation": "Interest Coverage Ratio = EBIT / Interest Expense"
}
}

View File

@ -1,21 +1,42 @@
from datetime import datetime, timedelta
from datetime import datetime
import orjson
import time
import sqlite3
import asyncio
import aiohttp
import random
from tqdm import tqdm
from dotenv import load_dotenv
import os
# Load stock screener data
with open(f"json/stock-screener/data.json", 'rb') as file:
stock_screener_data = orjson.loads(file.read())
stock_screener_data_dict = {item['symbol']: item for item in stock_screener_data}
async def save_json(symbol, data):
"""Save JSON data to a file."""
with open(f"json/statistics/{symbol}.json", 'wb') as file:
file.write(orjson.dumps(data))
async def get_data(symbol):
"""Extract specified columns data for a given symbol."""
columns = ['sharesOutStanding', 'sharesQoQ', 'sharesYoY','institutionalOwnership','floatShares',
'priceEarningsRatio','forwardPE','priceToSalesRatio','forwardPS','priceToBookRatio','priceToFreeCashFlowsRatio',
'sharesShort','shortOutStandingPercent','shortFloatPercent','shortRatio',
'enterpriseValue','evEarnings','evSales','evEBITDA','evEBIT','evFCF',
'currentRatio','quickRatio','debtRatio','debtEquityRatio',]
if symbol in stock_screener_data_dict:
result = {}
for column in columns:
result[column] = stock_screener_data_dict[symbol].get(column, None)
return result
return {}
async def run():
"""Main function to run the data extraction process."""
# Connect to SQLite database
con = sqlite3.connect('stocks.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
@ -23,8 +44,12 @@ async def run():
total_symbols = [row[0] for row in cursor.fetchall()]
con.close()
# Process symbols with progress bar
for symbol in tqdm(total_symbols, desc="Extracting dividend data"):
data = await get_data(symbol)
if data: # Only save if we have data
await save_json(symbol, data)
if __name__ == "__main__":
loop = asyncio.get_event_loop()
loop.run_until_complete(run())

View File

@ -93,6 +93,7 @@ def filter_data_quarterly(data):
def calculate_share_changes(symbol, item, con):
item['sharesQoQ'] = None
item['sharesYoY'] = None
item['floatShares'] = None
try:
# Execute query and load data
df = pd.read_sql_query(query_shares, con, params=(symbol,))
@ -109,7 +110,8 @@ def calculate_share_changes(symbol, item, con):
]
shareholder_statistics = sorted(shareholder_statistics, key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d'), reverse=False)
#Add latest float shares for statistics page
item['floatShares'] = shareholder_statistics[-1]['floatShares']
historical_shares = filter_data_quarterly(shareholder_statistics)
latest_data = historical_shares[-1]['outstandingShares']
@ -121,6 +123,7 @@ def calculate_share_changes(symbol, item, con):
except:
item['sharesQoQ'] = None
item['sharesYoY'] = None
item['floatShares'] = None
# Replace NaN values with None in the resulting JSON object