update metrics

This commit is contained in:
MuslemRahimi 2024-10-21 20:35:35 +02:00
parent eb6e8f39f9
commit acf2c72fdb
2 changed files with 151 additions and 184 deletions

View File

@ -149,122 +149,6 @@ def compute_q4_results(dataset):
def generate_revenue_dataset(dataset):
# Find all unique names and dates
all_dates = sorted(set(item['date'] for item in dataset))
all_names = sorted(set(item['name'] for item in dataset))
# Check and fill missing combinations at the beginning
name_date_map = defaultdict(lambda: defaultdict(lambda: None))
for item in dataset:
name_date_map[item['name']][item['date']] = item['value']
# Ensure all names have entries for all dates
for name in all_names:
for date in all_dates:
if date not in name_date_map[name]:
dataset.append({'name': name, 'date': date, 'value': None})
# Clean and process the dataset values
processed_dataset = []
for item in dataset:
if item['value'] not in (None, '', 0):
processed_dataset.append({
'name': item['name'],
'date': item['date'],
'value': int(float(item['value']))
})
else:
processed_dataset.append({
'name': item['name'],
'date': item['date'],
'value': None
})
dataset = processed_dataset
name_replacements = {
"datacenter": "Data Center",
"professionalvisualization": "Visualization",
"oemandother": "OEM & Other",
"automotive": "Automotive",
"oemip": "OEM & Other",
"gaming": "Gaming",
"mac": "Mac",
"iphone": "IPhone",
"ipad": "IPad",
"wearableshomeandaccessories": "Wearables",
"hardwareandaccessories": "Hardware & Accessories",
"software": "Software",
"collectibles": "Collectibles",
"automotivesales": "Auto",
"energygenerationandstoragesegment": "Energy and Storage",
"servicesandother": "Services & Other",
"automotiveregulatorycredits": "Regulatory Credits",
"intelligentcloud": "Intelligent Cloud",
"productivityandbusinessprocesses": "Productivity & Business",
"searchandnewsadvertising": "Advertising",
"linkedincorporation": "LinkedIn",
"morepersonalcomputing": "More Personal Computing",
"serviceother": "Service Other",
}
# Filter out unwanted categories
excluded_names = {'enterpriseembeddedandsemicustom','computingandgraphics','automotiveleasing ','officeproductsandcloudservices','serverproductsandcloudservices','automotiverevenues','automotive','computeandnetworking','graphics','gpu','automotivesegment','energygenerationandstoragesales','energygenerationandstorage','automotivesaleswithoutresalevalueguarantee','salesandservices','compute', 'networking', 'cloudserviceagreements', 'digital', 'allother', 'preownedvideogameproducts'}
dataset = [revenue for revenue in dataset if revenue['name'].lower() not in excluded_names]
# Process and clean the dataset
for item in dataset:
try:
name = item.get('name').lower()
value = int(float(item.get('value')))
if name in name_replacements:
item['name'] = name_replacements[name]
item['value'] = value
except:
pass
# Group by name and calculate total value
name_totals = defaultdict(int)
for item in dataset:
name_totals[item['name']] += item['value'] if item['value'] != None else 0
# Sort names by total value and get top 5, ensuring excluded names are not considered
top_names = sorted(
[(name, total) for name, total in name_totals.items() if name.lower() not in excluded_names],
key=lambda x: x[1],
reverse=True
)[:5]
top_names = [name for name, _ in top_names]
# Filter dataset to include only top 5 names
dataset = [item for item in dataset if item['name'] in top_names]
# Sort the dataset
dataset.sort(key=lambda item: (datetime.strptime(item['date'], '%Y-%m-%d'), item['value'] if item['value'] != None else 0), reverse=True)
# Process the data into the required format
result = {}
for item in dataset:
date = item['date']
value = item['value']
if date not in result:
result[date] = {'date': date, 'value': []}
result[date]['value'].append(value)
# Convert the result dictionary to a list
res_list = list(result.values())
print(res_list)
# Add value growth (assuming add_value_growth function exists)
res_list = add_value_growth(res_list)
final_result = {'names': top_names, 'history': res_list}
return final_result
def generate_geography_dataset(dataset):
country_replacements = {
@ -352,6 +236,130 @@ def generate_geography_dataset(dataset):
final_result = {'names': unique_names, 'history': res_list}
return final_result
def generate_revenue_dataset(dataset):
name_replacements = {
"datacenter": "Data Center",
"professionalvisualization": "Visualization",
"oemandother": "OEM & Other",
"automotive": "Automotive",
"oemip": "OEM & Other",
"gaming": "Gaming",
"mac": "Mac",
"iphone": "IPhone",
"ipad": "IPad",
"wearableshomeandaccessories": "Wearables",
"hardwareandaccessories": "Hardware & Accessories",
"software": "Software",
"collectibles": "Collectibles",
"automotivesales": "Auto",
"automotiveleasing": "Auto Leasing",
"energygenerationandstoragesegment": "Energy and Storage",
"servicesandother": "Services & Other",
"automotiveregulatorycredits": "Regulatory Credits",
"intelligentcloud": "Intelligent Cloud",
"productivityandbusinessprocesses": "Productivity & Business",
"searchandnewsadvertising": "Advertising",
"linkedincorporation": "LinkedIn",
"morepersonalcomputing": "More Personal Computing",
"serviceother": "Service Other",
"governmentoperatingsegment": "Government Operating Segment"
}
excluded_names = {'government','enterpriseembeddedandsemicustom','computingandgraphics','automotiveleasing ','officeproductsandcloudservices','serverproductsandcloudservices','automotiverevenues','automotive','computeandnetworking','graphics','gpu','automotivesegment','energygenerationandstoragesales','energygenerationandstorage','automotivesaleswithoutresalevalueguarantee','salesandservices','compute', 'networking', 'cloudserviceagreements', 'digital', 'allother', 'preownedvideogameproducts'}
dataset = [item for item in dataset if item['name'].lower() not in excluded_names]
# Find all unique names and dates
all_dates = sorted(set(item['date'] for item in dataset))
all_names = sorted(set(item['name'] for item in dataset))
dataset = [revenue for revenue in dataset if revenue['name'].lower() not in excluded_names]
# Check and fill missing combinations at the beginning
name_date_map = defaultdict(lambda: defaultdict(lambda: None))
for item in dataset:
name_date_map[item['name']][item['date']] = item['value']
# Ensure all names have entries for all dates
for name in all_names:
for date in all_dates:
if date not in name_date_map[name]:
dataset.append({'name': name, 'date': date, 'value': None})
# Clean and process the dataset values
processed_dataset = []
for item in dataset:
if item['value'] not in (None, '', 0):
processed_dataset.append({
'name': item['name'],
'date': item['date'],
'value': int(float(item['value']))
})
else:
processed_dataset.append({
'name': item['name'],
'date': item['date'],
'value': None
})
dataset = processed_dataset
#If the last value of the latest date is null or 0 remove all names in the list
dataset = sorted(dataset, key=lambda item: datetime.strptime(item['date'], '%Y-%m-%d'), reverse=True)
remember_names = set() # Use a set for faster membership checks
first_date = dataset[0]['date']
# Iterate through dataset to remember names where date matches first_date and value is None
for item in dataset:
if item['date'] == first_date and (item['value'] == None or item['value'] == 0):
remember_names.add(item['name'])
print(item['name'])
# Use list comprehension to filter items not in remember_names
dataset = [{**item} for item in dataset if item['name'] not in remember_names]
# Group by name and calculate total value
name_totals = defaultdict(int)
for item in dataset:
name_totals[item['name']] += item['value'] if item['value'] != None else 0
# Sort names by total value and get top 5, ensuring excluded names are not considered
top_names = sorted(
[(name, total) for name, total in name_totals.items() if name.lower() not in excluded_names],
key=lambda x: x[1],
reverse=True
)[:5]
top_names = [name for name, _ in top_names]
# Filter dataset to include only top 5 names
dataset = [item for item in dataset if item['name'] in top_names]
# Sort the dataset
dataset.sort(key=lambda item: (datetime.strptime(item['date'], '%Y-%m-%d'), item['value'] if item['value'] != None else 0), reverse=True)
top_names = [name_replacements[name.lower()] for name in top_names if name.lower() in name_replacements]
print(top_names)
result = {}
for item in dataset:
date = item['date']
value = item['value']
if date not in result:
result[date] = {'date': date, 'value': []}
result[date]['value'].append(value)
# Convert the result dictionary to a list
res_list = list(result.values())
# Add value growth (assuming add_value_growth function exists)
res_list = add_value_growth(res_list)
final_result = {'names': top_names, 'history': res_list}
return final_result
def run(symbol):
@ -373,7 +381,6 @@ def run(symbol):
dimensions_dict = ast.literal_eval(dimensions_str) if isinstance(dimensions_str, str) else dimensions_str
except (ValueError, SyntaxError):
dimensions_dict = {}
#print(dimensions_dict)
for column_name in [
"srt:StatementGeographicalAxis",
"us-gaap:StatementBusinessSegmentsAxis",
@ -381,7 +388,6 @@ def run(symbol):
]:
product_dimension = dimensions_dict.get(column_name) if isinstance(dimensions_dict, dict) else None
# Check if the namespace is 'us-gaap' and product_dimension is valid
print(product_dimension)
if row["namespace"] == "us-gaap" and product_dimension is not None and (
product_dimension.startswith(symbol.lower() + ":") or
product_dimension.startswith("country" + ":") or
@ -411,6 +417,7 @@ def run(symbol):
if column_name in column_list:
revenue_sources.append({"name": name, "value": row["value"], "date": row["end_date"]})
else:
geography_sources.append({"name": name, "value": row["value"], "date": row["end_date"]})
@ -419,7 +426,6 @@ def run(symbol):
except Exception as e:
print(e)
print(revenue_sources)
revenue_dataset = generate_revenue_dataset(revenue_sources)
geographic_dataset = generate_geography_dataset(geography_sources)
final_dataset = {'revenue': revenue_dataset, 'geographic': geographic_dataset}
@ -436,6 +442,7 @@ if __name__ == "__main__":
run('GME', custom_order)
'''
for symbol in ['AMD']: #['TSLA','NVDA','AAPL','GME']:
for symbol in ['TSLA']: #['PLTR','META','TSLA','NVDA','AAPL','GME']:
#for AMD we need 10-K form to get geography revenue
run(symbol)

File diff suppressed because one or more lines are too long