add market makers endpoint & cron job

This commit is contained in:
MuslemRahimi 2024-06-21 21:13:56 +02:00
parent 10f138ac61
commit c31c627503
3 changed files with 160 additions and 0 deletions

129
app/cron_market_maker.py Normal file
View File

@ -0,0 +1,129 @@
import ujson
import asyncio
import aiohttp
import sqlite3
from tqdm import tqdm
from datetime import datetime,timedelta
import os
from dotenv import load_dotenv
from concurrent.futures import ThreadPoolExecutor
from finra_api_queries import finra_api_queries
# Load environment variables
load_dotenv()
api_key = os.getenv('FINRA_API_KEY')
api_secret = os.getenv('FINRA_API_SECRET')
api_token = finra_api_queries.retrieve_api_token(finra_api_key_input=api_key, finra_api_secret_input=api_secret)
start_date = datetime.today() - timedelta(365)
end_date = datetime.today()
start_date = start_date.strftime("%Y-%m-%d")
end_date = end_date.strftime("%Y-%m-%d")
dataset_name = "weekly_summary"
filtered_columns_input = ['issueSymbolIdentifier', 'marketParticipantName', 'totalWeeklyTradeCount', 'totalWeeklyShareQuantity', 'totalNotionalSum', 'initialPublishedDate']
date_filter_inputs = [{'startDate': start_date, 'endDate': end_date, 'fieldName': 'initialPublishedDate'}]
def preserve_title_case(input_string):
# Convert the input string to title case
exceptions = ['LLC', 'LP', 'HRT', 'XTX', 'UBS']
title_case_string = input_string.title()
# Split the title case string into words
words = title_case_string.split()
# Check each word against the exceptions list and replace if necessary
for i, word in enumerate(words):
if word.upper() in exceptions:
words[i] = word.upper()
# Join the words back into a single string
result_string = ' '.join(words)
return result_string.replace('And', '&')
async def get_data(ticker):
try:
filters_input = {'issueSymbolIdentifier': [ticker]}
df = finra_api_queries.retrieve_dataset(
dataset_name,
api_token,
filtered_columns=filtered_columns_input,
filters = filters_input,
date_filter=date_filter_inputs)
df = df.rename(columns={"initialPublishedDate": "date","marketParticipantName": "name", "issueSymbolIdentifier": "symbol"})
df_copy = df.copy()
#Create new dataset for top 10 market makers with the highest activity
top_market_makers_df = df_copy.drop(['symbol','date'], axis=1)
top_market_makers_df = top_market_makers_df.groupby(['name']).mean().reset_index()
top_market_makers_df = top_market_makers_df.rename(columns={"totalWeeklyTradeCount": "avgWeeklyTradeCount","totalWeeklyShareQuantity": "avgWeeklyShareQuantity", "totalNotionalSum": "avgNotionalSum"})
top_market_makers_list = top_market_makers_df.to_dict('records')
top_market_makers_list = sorted(top_market_makers_list, key=lambda x: x['avgNotionalSum'], reverse=True)[0:10]
for item in top_market_makers_list:
item['name'] = preserve_title_case(item['name'])
#Create new dataset for historical movements
history_df = df_copy.drop(['symbol','name'], axis=1)
history_df = history_df.groupby(['date']).sum().reset_index()
history_data = history_df.to_dict('records')
return {'topMarketMakers': top_market_makers_list, 'history': history_data}
except Exception as e:
print(f"Error fetching data for {ticker}: {e}")
return {}
async def save_json(symbol, data):
# Use async file writing to avoid blocking the event loop
loop = asyncio.get_event_loop()
path = f"json/market-maker/companies/{symbol}.json"
os.makedirs(os.path.dirname(path), exist_ok=True)
await loop.run_in_executor(None, ujson.dump, data, open(path, 'w'))
async def process_ticker(ticker):
data = await get_data(ticker)
if len(data) > 0:
await save_json(ticker, data)
async def run():
con = sqlite3.connect('stocks.db')
etf_con = sqlite3.connect('etf.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE marketCap >= 1E9 AND symbol NOT LIKE '%.%'")
stocks_symbols = [row[0] for row in cursor.fetchall()]
etf_cursor = etf_con.cursor()
etf_cursor.execute("PRAGMA journal_mode = wal")
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
con.close()
etf_con.close()
total_symbols = stocks_symbols #+ etf_symbols
async with aiohttp.ClientSession() as session:
tasks = []
for ticker in total_symbols:
tasks.append(process_ticker(ticker))
# Run tasks concurrently in batches to avoid too many open connections
batch_size = 10 # Adjust based on your system's capacity
for i in tqdm(range(0, len(tasks), batch_size)):
batch = tasks[i:i + batch_size]
await asyncio.gather(*batch)
if __name__ == "__main__":
try:
asyncio.run(run())
except Exception as e:
print(f"An error occurred: {e}")

View File

@ -2871,6 +2871,23 @@ async def get_dark_pool(data:TickerData):
except:
res = []
redis_client.set(cache_key, ujson.dumps(res))
redis_client.expire(cache_key, 3600*3600) # Set cache expiration time to 1 day
return res
@app.post("/market-maker")
async def get_market_maker(data:TickerData):
ticker = data.ticker.upper()
cache_key = f"market-maker-{ticker}"
cached_result = redis_client.get(cache_key)
if cached_result:
return ujson.loads(cached_result)
try:
with open(f"json/market-maker/companies/{ticker}.json", 'r') as file:
res = ujson.load(file)
except:
res = {}
redis_client.set(cache_key, ujson.dumps(res))
redis_client.expire(cache_key, 3600*3600) # Set cache expiration time to 1 day
return res

View File

@ -309,6 +309,17 @@ def run_dark_pool():
]
subprocess.run(command)
def run_market_maker():
week = datetime.today().weekday()
if week <= 5:
subprocess.run(["python3", "cron_market_maker.py"])
command = [
"sudo", "rsync", "-avz", "-e", "ssh",
"/root/backend/app/json/market-maker",
f"root@{useast_ip_address}:/root/backend/app/json"
]
subprocess.run(command)
# Create functions to run each schedule in a separate thread
def run_threaded(job_func):
job_thread = threading.Thread(target=job_func)
@ -339,6 +350,9 @@ schedule.every().day.at("14:00").do(run_threaded, run_cron_var).tag('var_job')
schedule.every().day.at("15:45").do(run_threaded, run_restart_cache)
schedule.every().saturday.at("01:00").do(run_threaded, run_market_maker).tag('markt_maker_job')
schedule.every(1).minutes.do(run_threaded, run_cron_portfolio).tag('portfolio_job')
schedule.every(5).minutes.do(run_threaded, run_cron_market_movers).tag('market_movers_job')