diff --git a/app/cron_retail_volume.py b/app/cron_retail_volume.py index 573acd1..2c0dc8a 100644 --- a/app/cron_retail_volume.py +++ b/app/cron_retail_volume.py @@ -17,15 +17,25 @@ api_key = os.getenv('NASDAQ_API_KEY') today = datetime.now() # Calculate the date six months ago six_months_ago = today - timedelta(days=6*30) # Rough estimate, can be refined -query_template = """ + +query_stock_template = """ SELECT - name, marketCap, netIncome, price, volume + name, price, volume FROM stocks WHERE symbol = ? """ +query_etf_template = """ + SELECT + name, price, volume + FROM + etfs + WHERE + symbol = ? +""" + async def save_json(symbol, data): with open(f"json/retail-volume/companies/{symbol}.json", 'w') as file: @@ -95,12 +105,13 @@ async def run(): try: filtered_data = [item for item in transformed_data if symbol == item['symbol']] res = filter_past_six_months(filtered_data) - + query_template = query_stocks_template if symbol in stocks_symbols else query_etf_template + connection = con if symbol in stocks_symbols else etf_con #Compute strength of retail investors last_trade = res[-1]['traded'] last_sentiment = int(res[-1]['sentiment']) last_date = res[-1]['date'] - data = pd.read_sql_query(query_template, con, params=(symbol,)) + data = pd.read_sql_query(query_template, connection, params=(symbol,)) price = float(data['price'].iloc[0]) retail_volume = int(last_trade/price) total_volume = int(data['volume'].iloc[0])