update dark pool cron job

This commit is contained in:
MuslemRahimi 2024-12-29 16:00:25 +01:00
parent 19755e9f99
commit c618253767
4 changed files with 168 additions and 40 deletions

122
app/cron_dark_pool_level.py Normal file
View File

@ -0,0 +1,122 @@
import os
import pandas as pd
import numpy as np
import orjson
from dotenv import load_dotenv
import sqlite3
from datetime import datetime, timedelta
import pytz
from typing import List, Dict
def save_json(data, symbol):
def convert_numpy(obj):
if isinstance(obj, np.generic):
return obj.item() # Convert numpy scalar to Python scalar
raise TypeError(f"Type is not JSON serializable: {type(obj)}")
directory = "json/dark-pool/price-level"
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
with open(f"{directory}/{symbol}.json", 'wb') as file: # Use binary mode for orjson
file.write(orjson.dumps(data, default=convert_numpy))
# Function to get the last 7 weekdays
def get_last_7_weekdays():
today = datetime.today()
weekdays = []
# Start from today and go back until we have 7 weekdays
while len(weekdays) < 7:
if today.weekday() < 5: # Monday to Friday are weekdays (0-4)
weekdays.append(today)
today -= timedelta(days=1)
weekdays = [item.strftime("%Y-%m-%d") for item in weekdays]
return weekdays
def analyze_dark_pool_levels(trades: List[Dict],
size_threshold: float = 0.8,
price_grouping: float = 1.0) -> Dict:
# Convert to DataFrame for easier manipulation
df = pd.DataFrame(trades)
# Convert premium strings to float values
df['premium'] = df['premium'].apply(lambda x: float(str(x).replace(',', '')))
# Round prices to group nearby levels
df['price_level'] = (df['price'] / price_grouping).round(2) * price_grouping
# Group by price level and sum volumes
size_by_price = df.groupby('price_level').agg({
'size': 'sum',
'premium': 'sum'
}).reset_index()
# Calculate volume threshold
min_size = size_by_price['size'].quantile(size_threshold)
# Identify significant levels
significant_levels = size_by_price[size_by_price['size'] >= min_size]
# Sort levels by volume to get strongest levels first
significant_levels = significant_levels.sort_values('size', ascending=False)
# Separate into support and resistance based on current price
current_price = df['price'].iloc[-1]
support_levels = significant_levels[
significant_levels['price_level'] < current_price
].to_dict('records')
resistance_levels = significant_levels[
significant_levels['price_level'] > current_price
].to_dict('records')
# Calculate additional metrics
metrics = {
'avgTradeSize': round(df['size'].mean(),2),
'totalPrem': round(df['premium'].sum(),2),
'avgPremTrade': round(df['premium'].mean(),2)
}
price_level = support_levels+resistance_levels
price_level = sorted(price_level, key=lambda x: float(x['price_level']))
return {
'price_level': price_level,
'metrics': metrics,
}
data = []
weekdays = get_last_7_weekdays()
for date in weekdays:
try:
with open(f"json/dark-pool/historical-flow/{date}.json", "r") as file:
raw_data = orjson.loads(file.read())
data +=raw_data
except:
pass
symbol = "GME"
res_list = [item for item in data if item['ticker'] == symbol]
dark_pool_levels = analyze_dark_pool_levels(
trades=res_list,
size_threshold=0.9, # Look for levels with volume in top 20%
price_grouping=1.0 # Group prices within $1.00
)
print(dark_pool_levels['metrics'])
top_5_elements = [{k: v for k, v in item.items() if k not in ['ticker', 'sector', 'assetType']} for item in sorted(res_list, key=lambda x: float(x['premium']), reverse=True)[:5]]
# Add rank to each item
for rank, item in enumerate(top_5_elements, 1):
item['rank'] = rank
data = {'hottestTrades': top_5_elements, 'priceLevel': dark_pool_levels['price_level'], 'metrics': dark_pool_levels['metrics']}
if len(data) > 0:
save_json(data, symbol)
#print(data)

View File

@ -3359,57 +3359,63 @@ async def get_most_shorted_stocks(api_key: str = Security(get_api_key)):
redis_client.expire(cache_key, 3600*3600) # Set cache expiration time to 1 day
return res
@app.get("/most-retail-volume")
async def get_most_retail_volume(api_key: str = Security(get_api_key)):
cache_key = f"most-retail-volume"
cached_result = redis_client.get(cache_key)
if cached_result:
return orjson.loads(cached_result)
try:
with open(f"json/retail-volume/data.json", 'rb') as file:
res = orjson.loads(file.read())
except:
res = []
redis_client.set(cache_key, orjson.dumps(res))
redis_client.expire(cache_key, 3600*3600) # Set cache expiration time to 1 day
return res
@app.post("/retail-volume")
async def get_retail_volume(data:TickerData, api_key: str = Security(get_api_key)):
ticker = data.ticker.upper()
cache_key = f"retail-volume-{ticker}"
cached_result = redis_client.get(cache_key)
if cached_result:
return orjson.loads(cached_result)
try:
with open(f"json/retail-volume/companies/{ticker}.json", 'rb') as file:
res = orjson.loads(file.read())
except:
res = {}
redis_client.set(cache_key, orjson.dumps(res))
redis_client.expire(cache_key, 3600*3600) # Set cache expiration time to 1 day
return res
@app.post("/dark-pool")
@app.post("/historical-dark-pool")
async def get_dark_pool(data:TickerData, api_key: str = Security(get_api_key)):
ticker = data.ticker.upper()
cache_key = f"dark-pool-{ticker}"
cache_key = f"historical-dark-pool-{ticker}"
cached_result = redis_client.get(cache_key)
if cached_result:
return orjson.loads(cached_result)
return StreamingResponse(
io.BytesIO(cached_result),
media_type="application/json",
headers={"Content-Encoding": "gzip"})
try:
with open(f"json/dark-pool/companies/{ticker}.json", 'rb') as file:
res = orjson.loads(file.read())
except:
res = []
redis_client.set(cache_key, orjson.dumps(res))
redis_client.expire(cache_key, 3600*3600) # Set cache expiration time to 1 day
return res
data = orjson.dumps(res)
compressed_data = gzip.compress(data)
redis_client.set(cache_key, compressed_data)
redis_client.expire(cache_key, 3600*60)
return StreamingResponse(
io.BytesIO(compressed_data),
media_type="application/json",
headers={"Content-Encoding": "gzip"}
)
@app.post("/dark-pool-level")
async def get_dark_pool(data:TickerData, api_key: str = Security(get_api_key)):
ticker = data.ticker.upper()
cache_key = f"dark-pool-level-{ticker}"
cached_result = redis_client.get(cache_key)
if cached_result:
return StreamingResponse(
io.BytesIO(cached_result),
media_type="application/json",
headers={"Content-Encoding": "gzip"})
try:
with open(f"json/dark-pool/price-level/{ticker}.json", 'rb') as file:
res = orjson.loads(file.read())
except:
res = []
data = orjson.dumps(res)
compressed_data = gzip.compress(data)
redis_client.set(cache_key, compressed_data)
redis_client.expire(cache_key, 60*5)
return StreamingResponse(
io.BytesIO(compressed_data),
media_type="application/json",
headers={"Content-Encoding": "gzip"}
)
@app.get("/dark-pool-flow")
async def get_dark_pool_flow(api_key: str = Security(get_api_key)):

View File

@ -384,7 +384,7 @@ schedule.every(3).hours.do(run_threaded, run_press_releases).tag('press_release_
schedule.every(1).hours.do(run_threaded, run_fda_calendar).tag('fda_calendar_job')
schedule.every(1).minutes.do(run_threaded, run_dark_pool_flow).tag('dark_pool_flow_job')
schedule.every(10).seconds.do(run_threaded, run_dark_pool_flow).tag('dark_pool_flow_job')
schedule.every(2).minutes.do(run_threaded, run_dashboard).tag('dashboard_job')