bugfixing

This commit is contained in:
MuslemRahimi 2024-12-18 11:26:05 +01:00
parent 4a158f4a75
commit cd7eb8d857

View File

@ -185,36 +185,62 @@ def get_top_stocks():
with open(f"json/analyst/all-analyst-data.json", 'r') as file: with open(f"json/analyst/all-analyst-data.json", 'r') as file:
analyst_stats_list = orjson.loads(file.read()) analyst_stats_list = orjson.loads(file.read())
# Filter analysts with a score >= 4
filtered_data = [item for item in analyst_stats_list if item['analystScore'] >= 4] filtered_data = [item for item in analyst_stats_list if item['analystScore'] >= 4]
res_list = []
# Define the date range for the past 12 months # Define the date range for the past 12 months
end_date = datetime.now().date() end_date = datetime.now().date()
start_date = end_date - timedelta(days=365) start_date = end_date - timedelta(days=365)
# Track unique analyst-stock pairs and get the latest Strong Buy for each pair
res_list = [] res_list = []
for item in filtered_data:
ticker_list = item['ratingsList'] for analyst in filtered_data:
# Filter by 'Strong Buy' and ensure the rating is within the last 12 months analyst_id = analyst['analystId']
ticker_list = [{'ticker': i['ticker'], 'adjusted_pt_current': i['adjusted_pt_current'], 'date': i['date']} ticker_ratings = {}
for i in ticker_list
if i['rating_current'] == 'Strong Buy' for rating in analyst['ratingsList']:
and start_date <= datetime.strptime(i['date'], '%Y-%m-%d').date() <= end_date] rating_date = datetime.strptime(rating['date'], '%Y-%m-%d').date()
if len(ticker_list) > 0: ticker = rating['ticker']
res_list += ticker_list
if (
rating['rating_current'] == 'Strong Buy' and
start_date <= rating_date <= end_date
):
# Keep the latest rating for each stock by this analyst
if ticker not in ticker_ratings or rating_date > ticker_ratings[ticker]['date']:
ticker_ratings[ticker] = {
'ticker': ticker,
'adjusted_pt_current': rating['adjusted_pt_current'],
'date': rating_date,
'analystId': analyst_id
}
# Add the latest ratings to the result list
res_list.extend(ticker_ratings.values())
# Create a dictionary to store ticker occurrences and corresponding pt_current values # Create a dictionary to store ticker occurrences and corresponding pt_current values
ticker_data = {} ticker_data = {}
for item in res_list: for item in res_list:
ticker = item['ticker'] ticker = item['ticker']
pt_current_str = item['adjusted_pt_current'] pt_current_str = item['adjusted_pt_current']
analyst_id = item['analystId']
if pt_current_str: # Skip empty strings if pt_current_str: # Skip empty strings
pt_current = float(pt_current_str) pt_current = float(pt_current_str)
if ticker in ticker_data:
ticker_data[ticker]['pt_list'].append(pt_current)
else:
ticker_data[ticker] = {'pt_list': [pt_current]}
if ticker not in ticker_data:
ticker_data[ticker] = {
'pt_list': [],
'analyst_ids': set()
}
# Only count unique analysts per ticker
if analyst_id not in ticker_data[ticker]['analyst_ids']:
ticker_data[ticker]['pt_list'].append(pt_current)
ticker_data[ticker]['analyst_ids'].add(analyst_id)
# Fetch additional data (price, name, marketCap) for each ticker
for ticker, info in ticker_data.items(): for ticker, info in ticker_data.items():
try: try:
with open(f"json/quote/{ticker}.json", 'r') as file: with open(f"json/quote/{ticker}.json", 'r') as file:
@ -223,7 +249,6 @@ def get_top_stocks():
info['name'] = res.get('name', None) info['name'] = res.get('name', None)
info['marketCap'] = res.get('marketCap', None) info['marketCap'] = res.get('marketCap', None)
except: except:
info['price'] = None
info['name'] = None info['name'] = None
info['marketCap'] = None info['marketCap'] = None
@ -231,26 +256,35 @@ def get_top_stocks():
for ticker, info in ticker_data.items(): for ticker, info in ticker_data.items():
if info['pt_list']: if info['pt_list']:
info['median'] = round(statistics.median(info['pt_list']), 2) info['median'] = round(statistics.median(info['pt_list']), 2)
# Convert the dictionary back to a list format # Convert the dictionary back to a list format
result = [{'symbol': ticker, result = [
'upside': round((info['median']/info.get('price')-1)*100, 2) if info.get('price') else None, {
'priceTarget': info['median'], 'symbol': ticker,
'price': info['price'], 'upside': round((info['median'] / info.get('price') - 1) * 100, 2) if info.get('price') else None,
'counter': len(info['pt_list']), 'priceTarget': info['median'],
'name': info['name']} 'analystCounter': len(info['analyst_ids']),
for ticker, info in ticker_data.items()] 'analystRating': "Strong Buy",
'marketCap': info['marketCap'],
result = [item for item in result if item['upside'] is not None and item['upside'] >= 20 and item['upside'] <= 250] # Filter outliers 'name': info['name']
}
for ticker, info in ticker_data.items()
]
result_sorted = sorted(result, key=lambda x: x['counter'] if x['counter'] is not None else float('-inf'), reverse=True) # Filter outliers with upside between 20% and 250%
result = [item for item in result if item['upside'] is not None and 10 <= item['upside'] <= 250]
#top 100 stocks
result_sorted = result_sorted[:100]
# Sort results by the number of unique analysts (analystCounter) in descending order
result_sorted = sorted(result, key=lambda x: x['analystCounter'] if x['analystCounter'] is not None else float('-inf'), reverse=True)
# Top 50 stocks
result_sorted = result_sorted[:50]
# Add rank to each item
for rank, item in enumerate(result_sorted): for rank, item in enumerate(result_sorted):
item['rank'] = rank + 1 item['rank'] = rank + 1
# Save results to a JSON file
with open(f"json/analyst/top-stocks.json", 'w') as file: with open(f"json/analyst/top-stocks.json", 'w') as file:
file.write(orjson.dumps(result_sorted).decode('utf-8')) file.write(orjson.dumps(result_sorted).decode('utf-8'))