bugfixing
This commit is contained in:
parent
4a158f4a75
commit
cd7eb8d857
@ -185,36 +185,62 @@ def get_top_stocks():
|
||||
with open(f"json/analyst/all-analyst-data.json", 'r') as file:
|
||||
analyst_stats_list = orjson.loads(file.read())
|
||||
|
||||
# Filter analysts with a score >= 4
|
||||
filtered_data = [item for item in analyst_stats_list if item['analystScore'] >= 4]
|
||||
|
||||
res_list = []
|
||||
# Define the date range for the past 12 months
|
||||
end_date = datetime.now().date()
|
||||
start_date = end_date - timedelta(days=365)
|
||||
|
||||
# Track unique analyst-stock pairs and get the latest Strong Buy for each pair
|
||||
res_list = []
|
||||
for item in filtered_data:
|
||||
ticker_list = item['ratingsList']
|
||||
# Filter by 'Strong Buy' and ensure the rating is within the last 12 months
|
||||
ticker_list = [{'ticker': i['ticker'], 'adjusted_pt_current': i['adjusted_pt_current'], 'date': i['date']}
|
||||
for i in ticker_list
|
||||
if i['rating_current'] == 'Strong Buy'
|
||||
and start_date <= datetime.strptime(i['date'], '%Y-%m-%d').date() <= end_date]
|
||||
if len(ticker_list) > 0:
|
||||
res_list += ticker_list
|
||||
|
||||
for analyst in filtered_data:
|
||||
analyst_id = analyst['analystId']
|
||||
ticker_ratings = {}
|
||||
|
||||
for rating in analyst['ratingsList']:
|
||||
rating_date = datetime.strptime(rating['date'], '%Y-%m-%d').date()
|
||||
ticker = rating['ticker']
|
||||
|
||||
if (
|
||||
rating['rating_current'] == 'Strong Buy' and
|
||||
start_date <= rating_date <= end_date
|
||||
):
|
||||
# Keep the latest rating for each stock by this analyst
|
||||
if ticker not in ticker_ratings or rating_date > ticker_ratings[ticker]['date']:
|
||||
ticker_ratings[ticker] = {
|
||||
'ticker': ticker,
|
||||
'adjusted_pt_current': rating['adjusted_pt_current'],
|
||||
'date': rating_date,
|
||||
'analystId': analyst_id
|
||||
}
|
||||
|
||||
# Add the latest ratings to the result list
|
||||
res_list.extend(ticker_ratings.values())
|
||||
|
||||
# Create a dictionary to store ticker occurrences and corresponding pt_current values
|
||||
ticker_data = {}
|
||||
for item in res_list:
|
||||
ticker = item['ticker']
|
||||
pt_current_str = item['adjusted_pt_current']
|
||||
analyst_id = item['analystId']
|
||||
|
||||
if pt_current_str: # Skip empty strings
|
||||
pt_current = float(pt_current_str)
|
||||
if ticker in ticker_data:
|
||||
ticker_data[ticker]['pt_list'].append(pt_current)
|
||||
else:
|
||||
ticker_data[ticker] = {'pt_list': [pt_current]}
|
||||
|
||||
if ticker not in ticker_data:
|
||||
ticker_data[ticker] = {
|
||||
'pt_list': [],
|
||||
'analyst_ids': set()
|
||||
}
|
||||
|
||||
# Only count unique analysts per ticker
|
||||
if analyst_id not in ticker_data[ticker]['analyst_ids']:
|
||||
ticker_data[ticker]['pt_list'].append(pt_current)
|
||||
ticker_data[ticker]['analyst_ids'].add(analyst_id)
|
||||
|
||||
# Fetch additional data (price, name, marketCap) for each ticker
|
||||
for ticker, info in ticker_data.items():
|
||||
try:
|
||||
with open(f"json/quote/{ticker}.json", 'r') as file:
|
||||
@ -223,7 +249,6 @@ def get_top_stocks():
|
||||
info['name'] = res.get('name', None)
|
||||
info['marketCap'] = res.get('marketCap', None)
|
||||
except:
|
||||
info['price'] = None
|
||||
info['name'] = None
|
||||
info['marketCap'] = None
|
||||
|
||||
@ -233,24 +258,33 @@ def get_top_stocks():
|
||||
info['median'] = round(statistics.median(info['pt_list']), 2)
|
||||
|
||||
# Convert the dictionary back to a list format
|
||||
result = [{'symbol': ticker,
|
||||
'upside': round((info['median']/info.get('price')-1)*100, 2) if info.get('price') else None,
|
||||
result = [
|
||||
{
|
||||
'symbol': ticker,
|
||||
'upside': round((info['median'] / info.get('price') - 1) * 100, 2) if info.get('price') else None,
|
||||
'priceTarget': info['median'],
|
||||
'price': info['price'],
|
||||
'counter': len(info['pt_list']),
|
||||
'name': info['name']}
|
||||
for ticker, info in ticker_data.items()]
|
||||
'analystCounter': len(info['analyst_ids']),
|
||||
'analystRating': "Strong Buy",
|
||||
'marketCap': info['marketCap'],
|
||||
'name': info['name']
|
||||
}
|
||||
for ticker, info in ticker_data.items()
|
||||
]
|
||||
|
||||
result = [item for item in result if item['upside'] is not None and item['upside'] >= 20 and item['upside'] <= 250] # Filter outliers
|
||||
# Filter outliers with upside between 20% and 250%
|
||||
result = [item for item in result if item['upside'] is not None and 10 <= item['upside'] <= 250]
|
||||
|
||||
result_sorted = sorted(result, key=lambda x: x['counter'] if x['counter'] is not None else float('-inf'), reverse=True)
|
||||
# Sort results by the number of unique analysts (analystCounter) in descending order
|
||||
result_sorted = sorted(result, key=lambda x: x['analystCounter'] if x['analystCounter'] is not None else float('-inf'), reverse=True)
|
||||
|
||||
#top 100 stocks
|
||||
result_sorted = result_sorted[:100]
|
||||
# Top 50 stocks
|
||||
result_sorted = result_sorted[:50]
|
||||
|
||||
# Add rank to each item
|
||||
for rank, item in enumerate(result_sorted):
|
||||
item['rank'] = rank + 1
|
||||
|
||||
# Save results to a JSON file
|
||||
with open(f"json/analyst/top-stocks.json", 'w') as file:
|
||||
file.write(orjson.dumps(result_sorted).decode('utf-8'))
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user