bugfixing
This commit is contained in:
parent
1e8f725a6c
commit
db3b406646
@ -19,10 +19,10 @@ async def save_price_data(symbol, data):
|
||||
ujson.dump(data, file)
|
||||
|
||||
|
||||
async def fetch_and_save_symbols_data(symbols):
|
||||
async def fetch_and_save_symbols_data(symbols, semaphore):
|
||||
tasks = []
|
||||
for symbol in symbols:
|
||||
task = asyncio.create_task(get_todays_data(symbol))
|
||||
task = asyncio.create_task(get_todays_data(symbol, semaphore))
|
||||
tasks.append(task)
|
||||
responses = await asyncio.gather(*tasks)
|
||||
|
||||
@ -30,7 +30,7 @@ async def fetch_and_save_symbols_data(symbols):
|
||||
if len(response) > 0:
|
||||
await save_price_data(symbol, response)
|
||||
|
||||
async def get_todays_data(ticker):
|
||||
async def get_todays_data(ticker, semaphore):
|
||||
# Assuming GetStartEndDate().run() returns today's start and end datetime objects
|
||||
start_date_1d, end_date_1d = GetStartEndDate().run()
|
||||
|
||||
@ -48,56 +48,49 @@ async def get_todays_data(ticker):
|
||||
current_date = start_date_1d
|
||||
target_time = time(9, 30)
|
||||
|
||||
# Async HTTP request
|
||||
async with aiohttp.ClientSession() as session:
|
||||
responses = await asyncio.gather(session.get(url))
|
||||
# Use semaphore to limit concurrent connections
|
||||
async with semaphore:
|
||||
# Async HTTP request
|
||||
try:
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(url) as response:
|
||||
try:
|
||||
json_data = await response.json()
|
||||
# Create DataFrame and reverse order if needed
|
||||
df_1d = pd.DataFrame(json_data).iloc[::-1].reset_index(drop=True)
|
||||
|
||||
for response in responses:
|
||||
try:
|
||||
json_data = await response.json()
|
||||
# Create DataFrame and reverse order if needed
|
||||
df_1d = pd.DataFrame(json_data).iloc[::-1].reset_index(drop=True)
|
||||
# Filter out rows not matching today's date.
|
||||
df_1d = df_1d[df_1d['date'].str.startswith(today_str)]
|
||||
|
||||
# Filter out rows not matching today's date.
|
||||
# If the column is "date":
|
||||
df_1d = df_1d[df_1d['date'].str.startswith(today_str)]
|
||||
# If you want to rename "date" to "time", do that after filtering:
|
||||
df_1d = df_1d.drop(['volume'], axis=1)
|
||||
df_1d = df_1d.round(2).rename(columns={"date": "time"})
|
||||
|
||||
# If you want to rename "date" to "time", do that after filtering:
|
||||
df_1d = df_1d.drop(['volume'], axis=1)
|
||||
df_1d = df_1d.round(2).rename(columns={"date": "time"})
|
||||
# Update the first row 'close' with previousClose from your stored json if available
|
||||
try:
|
||||
with open(f"json/quote/{ticker}.json", 'r') as file:
|
||||
res = ujson.load(file)
|
||||
df_1d.loc[df_1d.index[0], 'close'] = res['previousClose']
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
# Update the first row 'close' with previousClose from your stored json if available
|
||||
try:
|
||||
with open(f"json/quote/{ticker}.json", 'r') as file:
|
||||
res = ujson.load(file)
|
||||
df_1d.loc[df_1d.index[0], 'close'] = res['previousClose']
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
# The following block handles non-weekend logic and appends additional rows if needed.
|
||||
'''
|
||||
if current_weekday not in (5, 6):
|
||||
if current_date.time() >= target_time:
|
||||
extract_date = current_date.strftime('%Y-%m-%d')
|
||||
end_time = pd.to_datetime(f'{extract_date} 16:00:00')
|
||||
new_index = pd.date_range(start=df_1d['time'].iloc[-1], end=end_time, freq='1min')
|
||||
|
||||
remaining_df = pd.DataFrame(index=new_index, columns=['open', 'high', 'low', 'close'])
|
||||
remaining_df = remaining_df.reset_index().rename(columns={"index": "time"})
|
||||
remaining_df['time'] = remaining_df['time'].dt.strftime('%Y-%m-%d %H:%M:%S')
|
||||
remaining_df = remaining_df.set_index('time')
|
||||
|
||||
# Concatenate the remaining_df (skipping the first row as in your original code)
|
||||
df_1d = pd.concat([df_1d, remaining_df[1::]], ignore_index=True)
|
||||
'''
|
||||
# Convert DataFrame back to JSON list format
|
||||
df_1d = ujson.loads(df_1d.to_json(orient="records"))
|
||||
except Exception as e:
|
||||
print(e)
|
||||
df_1d = []
|
||||
# Convert DataFrame back to JSON list format
|
||||
df_1d = ujson.loads(df_1d.to_json(orient="records"))
|
||||
except Exception as e:
|
||||
print(f"Error processing data for {ticker}: {e}")
|
||||
df_1d = []
|
||||
except Exception as e:
|
||||
print(f"Connection error for {ticker}: {e}")
|
||||
df_1d = []
|
||||
|
||||
return df_1d
|
||||
|
||||
async def run():
|
||||
# Create a semaphore to limit the number of concurrent connections
|
||||
# Adjust this number based on your system's limits
|
||||
connection_limit = 50
|
||||
semaphore = asyncio.Semaphore(connection_limit)
|
||||
|
||||
con = sqlite3.connect('stocks.db')
|
||||
etf_con = sqlite3.connect('etf.db')
|
||||
|
||||
@ -130,17 +123,19 @@ async def run():
|
||||
stocks_symbols = sorted(stocks_symbols, key=lambda s: market_caps[s], reverse=True)
|
||||
stocks_symbols = sorted(stocks_symbols, key=lambda x: '.' in x)
|
||||
|
||||
total_symbols = stocks_symbols+ etf_symbols + index_symbols
|
||||
total_symbols = stocks_symbols + etf_symbols + index_symbols
|
||||
|
||||
chunk_size = 500
|
||||
# Reduce chunk size to avoid too many concurrent requests
|
||||
chunk_size = 100
|
||||
for i in range(0, len(total_symbols), chunk_size):
|
||||
symbols_chunk = total_symbols[i:i+chunk_size]
|
||||
await fetch_and_save_symbols_data(symbols_chunk)
|
||||
print('sleeping...')
|
||||
await asyncio.sleep(30) # Wait for 60 seconds between chunks
|
||||
await fetch_and_save_symbols_data(symbols_chunk, semaphore)
|
||||
print(f'Completed chunk {i//chunk_size + 1} of {(len(total_symbols) + chunk_size - 1) // chunk_size}')
|
||||
# No need to sleep as much since we're using a semaphore to control concurrency
|
||||
await asyncio.sleep(5)
|
||||
|
||||
|
||||
try:
|
||||
asyncio.run(run())
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print(f"Main error: {e}")
|
||||
Loading…
x
Reference in New Issue
Block a user