update consensus rating
This commit is contained in:
parent
c8fe9fb255
commit
e17316e8d6
@ -67,35 +67,32 @@ def get_all_analyst_summary(res_list):
|
||||
# Get the latest summary of ratings from the last 12 months
|
||||
end_date = date.today()
|
||||
|
||||
# Filter the data for the last 12 months and consider the last N ratings
|
||||
#Furthermore consider only the last rating of the analyst if he provided multiple in the last 12 months
|
||||
#filtered data is needed for the recommendation list
|
||||
filtered_data = [item for item in res_list if start_date_12m <= datetime.strptime(item['date'], '%Y-%m-%d').date() <= end_date]
|
||||
#unique list is needed for analyst summary rating
|
||||
# Filter data to include only ratings within the last 12 months
|
||||
filtered_data = [
|
||||
item for item in res_list
|
||||
if start_date_12m <= datetime.strptime(item['date'], '%Y-%m-%d').date() <= end_date
|
||||
]
|
||||
# Use only the latest rating per analyst and limit to 60 entries
|
||||
unique_filtered_data = filter_latest_entries(filtered_data)[:60]
|
||||
|
||||
# Initialize dictionary to store the latest price target for each analyst
|
||||
# Collect the latest price target for each analyst
|
||||
latest_pt_current = defaultdict(list)
|
||||
|
||||
# Iterate through the filtered data to collect pt_current for each analyst
|
||||
for item in unique_filtered_data:
|
||||
if 'adjusted_pt_current' in item and item['adjusted_pt_current']:
|
||||
analyst_name = item['analyst_name']
|
||||
try:
|
||||
pt_current_value = float(item['adjusted_pt_current'])
|
||||
# Collect all pt_current values for each analyst
|
||||
latest_pt_current[analyst_name].append(pt_current_value)
|
||||
except (ValueError, TypeError):
|
||||
print(f"Invalid pt_current value for analyst '{analyst_name}': {item['adjusted_pt_current']}")
|
||||
|
||||
# Compute statistics for price targets
|
||||
pt_current_values = [val for sublist in latest_pt_current.values() for val in sublist]
|
||||
#remove outliers to keep high and low price target reasonable
|
||||
# Remove outliers using the IQR method
|
||||
q1, q3 = np.percentile(pt_current_values, [25, 75])
|
||||
iqr = q3 - q1
|
||||
pt_current_values = [x for x in pt_current_values if (q1 - 1.5 * iqr) <= x <= (q3 + 1.5 * iqr)]
|
||||
|
||||
# Compute different price target metrics if there are values, otherwise set to 0
|
||||
if pt_current_values:
|
||||
median_pt_current = statistics.median(pt_current_values)
|
||||
avg_pt_current = statistics.mean(pt_current_values)
|
||||
@ -104,80 +101,60 @@ def get_all_analyst_summary(res_list):
|
||||
else:
|
||||
median_pt_current = avg_pt_current = low_pt_current = high_pt_current = 0
|
||||
|
||||
# Initialize recommendation tracking
|
||||
# Define rating hierarchy for conversion
|
||||
rating_hierarchy = {'Strong Sell': 0, 'Sell': 1, 'Hold': 2, 'Buy': 3, 'Strong Buy': 4}
|
||||
|
||||
# Track monthly recommendations
|
||||
# Track monthly recommendations for visualization
|
||||
monthly_recommendations = {}
|
||||
|
||||
# Iterate through the filtered data to track monthly recommendations
|
||||
for item in filtered_data:
|
||||
# Extract month from the date
|
||||
item_date = datetime.strptime(item['date'], '%Y-%m-%d')
|
||||
month_key = item_date.strftime('%Y-%m-01')
|
||||
|
||||
# Initialize month's recommendation counts if not exists
|
||||
if month_key not in monthly_recommendations:
|
||||
monthly_recommendations[month_key] = {
|
||||
'Strong Sell': 0,
|
||||
'Sell': 0,
|
||||
'Hold': 0,
|
||||
'Buy': 0,
|
||||
'Strong Buy': 0
|
||||
}
|
||||
|
||||
# Check and increment recommendation count for the month
|
||||
monthly_recommendations[month_key] = {key: 0 for key in rating_hierarchy.keys()}
|
||||
if 'rating_current' in item and item['rating_current'] in rating_hierarchy:
|
||||
monthly_recommendations[month_key][item['rating_current']] += 1
|
||||
|
||||
# Convert monthly recommendations to a sorted list
|
||||
recommendation_list = []
|
||||
for month in sorted(monthly_recommendations.keys()):
|
||||
month_data = monthly_recommendations[month]
|
||||
recommendation_list.append({
|
||||
'date': month,
|
||||
'Strong Sell': month_data['Strong Sell'],
|
||||
'Sell': month_data['Sell'],
|
||||
'Hold': month_data['Hold'],
|
||||
'Buy': month_data['Buy'],
|
||||
'Strong Buy': month_data['Strong Buy']
|
||||
**month_data
|
||||
})
|
||||
|
||||
# Compute consensus ratings (similar to previous implementation)
|
||||
consensus_ratings = defaultdict(str)
|
||||
# Build a dictionary with the latest rating per analyst
|
||||
consensus_ratings = {}
|
||||
for item in unique_filtered_data:
|
||||
if 'rating_current' in item and item['rating_current'] and 'analyst_name' in item and item['analyst_name']:
|
||||
try:
|
||||
analyst_name = item['analyst_name']
|
||||
current_rating = item['rating_current']
|
||||
if current_rating in rating_hierarchy:
|
||||
consensus_ratings[analyst_name] = current_rating
|
||||
except:
|
||||
pass
|
||||
if item.get('rating_current') and item.get('analyst_name'):
|
||||
current_rating = item['rating_current']
|
||||
if current_rating in rating_hierarchy:
|
||||
consensus_ratings[item['analyst_name']] = current_rating
|
||||
|
||||
# --- New Robust Consensus Rating Calculation ---
|
||||
# Convert each valid rating into its numeric value
|
||||
rating_values = [rating_hierarchy[r] for r in consensus_ratings.values() if r in rating_hierarchy]
|
||||
if rating_values:
|
||||
# Compute the median and round it to the nearest integer
|
||||
consensus_numeric = round(statistics.median(rating_values))
|
||||
# Map the numeric consensus back to its corresponding rating string
|
||||
inverse_rating_hierarchy = {v: k for k, v in rating_hierarchy.items()}
|
||||
consensus_rating = inverse_rating_hierarchy.get(consensus_numeric, 'Hold')
|
||||
else:
|
||||
consensus_rating = 'Hold'
|
||||
# -------------------------------------------------
|
||||
|
||||
# Compute the consensus rating based on the most frequent rating among analysts
|
||||
consensus_rating_counts = defaultdict(int)
|
||||
for rating in consensus_ratings.values():
|
||||
consensus_rating_counts[rating] += 1
|
||||
consensus_rating = max(consensus_rating_counts, key=consensus_rating_counts.get)
|
||||
|
||||
# Sum up all Buy, Sell, Hold for the progress bar in sveltekit
|
||||
data_dict = dict(consensus_rating_counts)
|
||||
# Build aggregated counts for Buy, Sell, and Hold (for the progress bar)
|
||||
data_dict = {key: 0 for key in rating_hierarchy.keys()}
|
||||
for r in consensus_ratings.values():
|
||||
data_dict[r] += 1
|
||||
buy_total = data_dict.get('Strong Buy', 0) + data_dict.get('Buy', 0)
|
||||
sell_total = data_dict.get('Strong Sell', 0) + data_dict.get('Sell', 0)
|
||||
hold_total = data_dict.get('Hold', 0)
|
||||
|
||||
# Count unique analysts
|
||||
unique_analyst_names = set()
|
||||
numOfAnalyst = len(unique_filtered_data)
|
||||
'''
|
||||
for item in filtered_data:
|
||||
if item['analyst_name'] not in unique_analyst_names:
|
||||
unique_analyst_names.add(item['analyst_name'])
|
||||
numOfAnalyst += 1
|
||||
'''
|
||||
|
||||
# Update stats dictionary with new keys including recommendationList
|
||||
# Update stats dictionary with computed metrics and the recommendation list
|
||||
stats = {
|
||||
'numOfAnalyst': numOfAnalyst,
|
||||
'consensusRating': consensus_rating,
|
||||
@ -193,40 +170,36 @@ def get_all_analyst_summary(res_list):
|
||||
res = {**stats, **categorical_ratings}
|
||||
return res
|
||||
|
||||
|
||||
|
||||
def get_top_analyst_summary(res_list):
|
||||
# Get the latest summary of ratings from the last 12 months
|
||||
end_date = date.today()
|
||||
res_list = [item for item in res_list if item['analystScore'] >= 4]
|
||||
# Filter the data for the last 12 months and consider the last N ratings
|
||||
#Furthermore consider only the last rating of the analyst if he provided multiple in the last 12 months
|
||||
#filtered data is needed for the recommendation list
|
||||
|
||||
# Filter data to only include ratings from the last 12 months
|
||||
filtered_data = [item for item in res_list if start_date_12m <= datetime.strptime(item['date'], '%Y-%m-%d').date() <= end_date]
|
||||
#unique list is needed for analyst summary rating
|
||||
# Ensure only the latest rating per analyst is used
|
||||
unique_filtered_data = filter_latest_entries(filtered_data)
|
||||
|
||||
print(unique_filtered_data)
|
||||
# Initialize dictionary to store the latest price target for each analyst
|
||||
# Collect the latest price target for each analyst
|
||||
latest_pt_current = defaultdict(list)
|
||||
|
||||
# Iterate through the filtered data to collect pt_current for each analyst
|
||||
for item in unique_filtered_data:
|
||||
if 'adjusted_pt_current' in item and item['adjusted_pt_current']:
|
||||
analyst_name = item['analyst_name']
|
||||
try:
|
||||
pt_current_value = float(item['adjusted_pt_current'])
|
||||
# Collect all pt_current values for each analyst
|
||||
latest_pt_current[analyst_name].append(pt_current_value)
|
||||
except (ValueError, TypeError):
|
||||
print(f"Invalid pt_current value for analyst '{analyst_name}': {item['adjusted_pt_current']}")
|
||||
|
||||
# Compute statistics for price targets
|
||||
# Compute statistics for price targets (removing outliers)
|
||||
pt_current_values = [val for sublist in latest_pt_current.values() for val in sublist]
|
||||
#remove outliers to keep high and low price target reasonable
|
||||
q1, q3 = np.percentile(pt_current_values, [25, 75])
|
||||
iqr = q3 - q1
|
||||
pt_current_values = [x for x in pt_current_values if (q1 - 1.5 * iqr) <= x <= (q3 + 1.5 * iqr)]
|
||||
|
||||
# Compute different price target metrics if there are values, otherwise set to 0
|
||||
if pt_current_values:
|
||||
q1, q3 = np.percentile(pt_current_values, [25, 75])
|
||||
iqr = q3 - q1
|
||||
pt_current_values = [x for x in pt_current_values if (q1 - 1.5 * iqr) <= x <= (q3 + 1.5 * iqr)]
|
||||
|
||||
if pt_current_values:
|
||||
median_pt_current = statistics.median(pt_current_values)
|
||||
avg_pt_current = statistics.mean(pt_current_values)
|
||||
@ -235,75 +208,60 @@ def get_top_analyst_summary(res_list):
|
||||
else:
|
||||
median_pt_current = avg_pt_current = low_pt_current = high_pt_current = 0
|
||||
|
||||
# Initialize recommendation tracking
|
||||
# Define the rating hierarchy
|
||||
rating_hierarchy = {'Strong Sell': 0, 'Sell': 1, 'Hold': 2, 'Buy': 3, 'Strong Buy': 4}
|
||||
|
||||
# Track monthly recommendations
|
||||
# Track monthly recommendations for visualization
|
||||
monthly_recommendations = {}
|
||||
|
||||
# Iterate through the filtered data to track monthly recommendations
|
||||
for item in filtered_data:
|
||||
# Extract month from the date
|
||||
item_date = datetime.strptime(item['date'], '%Y-%m-%d')
|
||||
month_key = item_date.strftime('%Y-%m-01')
|
||||
|
||||
# Initialize month's recommendation counts if not exists
|
||||
if month_key not in monthly_recommendations:
|
||||
monthly_recommendations[month_key] = {
|
||||
'Strong Sell': 0,
|
||||
'Sell': 0,
|
||||
'Hold': 0,
|
||||
'Buy': 0,
|
||||
'Strong Buy': 0
|
||||
}
|
||||
monthly_recommendations[month_key] = {key: 0 for key in rating_hierarchy.keys()}
|
||||
|
||||
# Check and increment recommendation count for the month
|
||||
if 'rating_current' in item and item['rating_current'] in rating_hierarchy:
|
||||
monthly_recommendations[month_key][item['rating_current']] += 1
|
||||
|
||||
# Convert monthly recommendations to a sorted list
|
||||
|
||||
recommendation_list = []
|
||||
for month in sorted(monthly_recommendations.keys()):
|
||||
month_data = monthly_recommendations[month]
|
||||
recommendation_list.append({
|
||||
'date': month,
|
||||
'Strong Sell': month_data['Strong Sell'],
|
||||
'Sell': month_data['Sell'],
|
||||
'Hold': month_data['Hold'],
|
||||
'Buy': month_data['Buy'],
|
||||
'Strong Buy': month_data['Strong Buy']
|
||||
**month_data
|
||||
})
|
||||
|
||||
# Compute consensus ratings (similar to previous implementation)
|
||||
consensus_ratings = defaultdict(str)
|
||||
# Build a dictionary with the latest rating per analyst
|
||||
consensus_ratings = {}
|
||||
for item in unique_filtered_data:
|
||||
if 'rating_current' in item and item['rating_current'] and 'analyst_name' in item and item['analyst_name']:
|
||||
try:
|
||||
analyst_name = item['analyst_name']
|
||||
current_rating = item['rating_current']
|
||||
if current_rating in rating_hierarchy:
|
||||
consensus_ratings[analyst_name] = current_rating
|
||||
except:
|
||||
pass
|
||||
if item.get('rating_current') and item.get('analyst_name'):
|
||||
current_rating = item['rating_current']
|
||||
if current_rating in rating_hierarchy:
|
||||
consensus_ratings[item['analyst_name']] = current_rating
|
||||
|
||||
# --- New Robust Consensus Rating Calculation ---
|
||||
# Convert each valid rating into its numeric score and compute the median
|
||||
rating_values = [rating_hierarchy[r] for r in consensus_ratings.values() if r in rating_hierarchy]
|
||||
if rating_values:
|
||||
consensus_numeric = round(statistics.median(rating_values))
|
||||
# Map the numeric consensus back to its corresponding rating string
|
||||
inverse_rating_hierarchy = {v: k for k, v in rating_hierarchy.items()}
|
||||
consensus_rating = inverse_rating_hierarchy.get(consensus_numeric, 'Hold')
|
||||
else:
|
||||
consensus_rating = 'Hold'
|
||||
# -------------------------------------------------
|
||||
|
||||
# Compute the consensus rating based on the most frequent rating among analysts
|
||||
consensus_rating_counts = defaultdict(int)
|
||||
for rating in consensus_ratings.values():
|
||||
consensus_rating_counts[rating] += 1
|
||||
consensus_rating = max(consensus_rating_counts, key=consensus_rating_counts.get)
|
||||
|
||||
# Sum up all Buy, Sell, Hold for the progress bar in sveltekit
|
||||
data_dict = dict(consensus_rating_counts)
|
||||
# Sum up the recommendation counts for Buy, Sell, and Hold for progress bar purposes
|
||||
data_dict = {key: 0 for key in rating_hierarchy.keys()}
|
||||
for r in consensus_ratings.values():
|
||||
data_dict[r] += 1
|
||||
buy_total = data_dict.get('Strong Buy', 0) + data_dict.get('Buy', 0)
|
||||
sell_total = data_dict.get('Strong Sell', 0) + data_dict.get('Sell', 0)
|
||||
hold_total = data_dict.get('Hold', 0)
|
||||
|
||||
# Count unique analysts
|
||||
unique_analyst_names = set()
|
||||
# Count the unique analysts used in the unique filtered data
|
||||
numOfAnalyst = len(unique_filtered_data)
|
||||
|
||||
|
||||
# Update stats dictionary with new keys including recommendationList
|
||||
# Prepare the stats dictionary with all the computed values
|
||||
stats = {
|
||||
'numOfAnalyst': numOfAnalyst,
|
||||
'consensusRating': consensus_rating,
|
||||
@ -315,7 +273,6 @@ def get_top_analyst_summary(res_list):
|
||||
}
|
||||
|
||||
categorical_ratings = {'Buy': buy_total, 'Sell': sell_total, 'Hold': hold_total}
|
||||
|
||||
res = {**stats, **categorical_ratings}
|
||||
return res
|
||||
|
||||
@ -465,7 +422,6 @@ def run(chunk, analyst_list, con):
|
||||
print(e)
|
||||
|
||||
|
||||
|
||||
try:
|
||||
con = sqlite3.connect('stocks.db')
|
||||
stock_cursor = con.cursor()
|
||||
@ -479,7 +435,7 @@ try:
|
||||
|
||||
chunk_size = len(stock_symbols) // 300 # Divide the list into N chunks
|
||||
chunks = [stock_symbols[i:i + chunk_size] for i in range(0, len(stock_symbols), chunk_size)]
|
||||
chunks = [['AAPL']]
|
||||
#chunks = [['AAPL']]
|
||||
for chunk in chunks:
|
||||
run(chunk, analyst_stats_list, con)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user