update consensus rating

This commit is contained in:
MuslemRahimi 2025-02-21 23:36:14 +01:00
parent c8fe9fb255
commit e17316e8d6

View File

@ -67,35 +67,32 @@ def get_all_analyst_summary(res_list):
# Get the latest summary of ratings from the last 12 months
end_date = date.today()
# Filter the data for the last 12 months and consider the last N ratings
#Furthermore consider only the last rating of the analyst if he provided multiple in the last 12 months
#filtered data is needed for the recommendation list
filtered_data = [item for item in res_list if start_date_12m <= datetime.strptime(item['date'], '%Y-%m-%d').date() <= end_date]
#unique list is needed for analyst summary rating
# Filter data to include only ratings within the last 12 months
filtered_data = [
item for item in res_list
if start_date_12m <= datetime.strptime(item['date'], '%Y-%m-%d').date() <= end_date
]
# Use only the latest rating per analyst and limit to 60 entries
unique_filtered_data = filter_latest_entries(filtered_data)[:60]
# Initialize dictionary to store the latest price target for each analyst
# Collect the latest price target for each analyst
latest_pt_current = defaultdict(list)
# Iterate through the filtered data to collect pt_current for each analyst
for item in unique_filtered_data:
if 'adjusted_pt_current' in item and item['adjusted_pt_current']:
analyst_name = item['analyst_name']
try:
pt_current_value = float(item['adjusted_pt_current'])
# Collect all pt_current values for each analyst
latest_pt_current[analyst_name].append(pt_current_value)
except (ValueError, TypeError):
print(f"Invalid pt_current value for analyst '{analyst_name}': {item['adjusted_pt_current']}")
# Compute statistics for price targets
pt_current_values = [val for sublist in latest_pt_current.values() for val in sublist]
#remove outliers to keep high and low price target reasonable
# Remove outliers using the IQR method
q1, q3 = np.percentile(pt_current_values, [25, 75])
iqr = q3 - q1
pt_current_values = [x for x in pt_current_values if (q1 - 1.5 * iqr) <= x <= (q3 + 1.5 * iqr)]
# Compute different price target metrics if there are values, otherwise set to 0
if pt_current_values:
median_pt_current = statistics.median(pt_current_values)
avg_pt_current = statistics.mean(pt_current_values)
@ -104,80 +101,60 @@ def get_all_analyst_summary(res_list):
else:
median_pt_current = avg_pt_current = low_pt_current = high_pt_current = 0
# Initialize recommendation tracking
# Define rating hierarchy for conversion
rating_hierarchy = {'Strong Sell': 0, 'Sell': 1, 'Hold': 2, 'Buy': 3, 'Strong Buy': 4}
# Track monthly recommendations
# Track monthly recommendations for visualization
monthly_recommendations = {}
# Iterate through the filtered data to track monthly recommendations
for item in filtered_data:
# Extract month from the date
item_date = datetime.strptime(item['date'], '%Y-%m-%d')
month_key = item_date.strftime('%Y-%m-01')
# Initialize month's recommendation counts if not exists
if month_key not in monthly_recommendations:
monthly_recommendations[month_key] = {
'Strong Sell': 0,
'Sell': 0,
'Hold': 0,
'Buy': 0,
'Strong Buy': 0
}
# Check and increment recommendation count for the month
monthly_recommendations[month_key] = {key: 0 for key in rating_hierarchy.keys()}
if 'rating_current' in item and item['rating_current'] in rating_hierarchy:
monthly_recommendations[month_key][item['rating_current']] += 1
# Convert monthly recommendations to a sorted list
recommendation_list = []
for month in sorted(monthly_recommendations.keys()):
month_data = monthly_recommendations[month]
recommendation_list.append({
'date': month,
'Strong Sell': month_data['Strong Sell'],
'Sell': month_data['Sell'],
'Hold': month_data['Hold'],
'Buy': month_data['Buy'],
'Strong Buy': month_data['Strong Buy']
**month_data
})
# Compute consensus ratings (similar to previous implementation)
consensus_ratings = defaultdict(str)
# Build a dictionary with the latest rating per analyst
consensus_ratings = {}
for item in unique_filtered_data:
if 'rating_current' in item and item['rating_current'] and 'analyst_name' in item and item['analyst_name']:
try:
analyst_name = item['analyst_name']
current_rating = item['rating_current']
if current_rating in rating_hierarchy:
consensus_ratings[analyst_name] = current_rating
except:
pass
if item.get('rating_current') and item.get('analyst_name'):
current_rating = item['rating_current']
if current_rating in rating_hierarchy:
consensus_ratings[item['analyst_name']] = current_rating
# --- New Robust Consensus Rating Calculation ---
# Convert each valid rating into its numeric value
rating_values = [rating_hierarchy[r] for r in consensus_ratings.values() if r in rating_hierarchy]
if rating_values:
# Compute the median and round it to the nearest integer
consensus_numeric = round(statistics.median(rating_values))
# Map the numeric consensus back to its corresponding rating string
inverse_rating_hierarchy = {v: k for k, v in rating_hierarchy.items()}
consensus_rating = inverse_rating_hierarchy.get(consensus_numeric, 'Hold')
else:
consensus_rating = 'Hold'
# -------------------------------------------------
# Compute the consensus rating based on the most frequent rating among analysts
consensus_rating_counts = defaultdict(int)
for rating in consensus_ratings.values():
consensus_rating_counts[rating] += 1
consensus_rating = max(consensus_rating_counts, key=consensus_rating_counts.get)
# Sum up all Buy, Sell, Hold for the progress bar in sveltekit
data_dict = dict(consensus_rating_counts)
# Build aggregated counts for Buy, Sell, and Hold (for the progress bar)
data_dict = {key: 0 for key in rating_hierarchy.keys()}
for r in consensus_ratings.values():
data_dict[r] += 1
buy_total = data_dict.get('Strong Buy', 0) + data_dict.get('Buy', 0)
sell_total = data_dict.get('Strong Sell', 0) + data_dict.get('Sell', 0)
hold_total = data_dict.get('Hold', 0)
# Count unique analysts
unique_analyst_names = set()
numOfAnalyst = len(unique_filtered_data)
'''
for item in filtered_data:
if item['analyst_name'] not in unique_analyst_names:
unique_analyst_names.add(item['analyst_name'])
numOfAnalyst += 1
'''
# Update stats dictionary with new keys including recommendationList
# Update stats dictionary with computed metrics and the recommendation list
stats = {
'numOfAnalyst': numOfAnalyst,
'consensusRating': consensus_rating,
@ -193,40 +170,36 @@ def get_all_analyst_summary(res_list):
res = {**stats, **categorical_ratings}
return res
def get_top_analyst_summary(res_list):
# Get the latest summary of ratings from the last 12 months
end_date = date.today()
res_list = [item for item in res_list if item['analystScore'] >= 4]
# Filter the data for the last 12 months and consider the last N ratings
#Furthermore consider only the last rating of the analyst if he provided multiple in the last 12 months
#filtered data is needed for the recommendation list
# Filter data to only include ratings from the last 12 months
filtered_data = [item for item in res_list if start_date_12m <= datetime.strptime(item['date'], '%Y-%m-%d').date() <= end_date]
#unique list is needed for analyst summary rating
# Ensure only the latest rating per analyst is used
unique_filtered_data = filter_latest_entries(filtered_data)
print(unique_filtered_data)
# Initialize dictionary to store the latest price target for each analyst
# Collect the latest price target for each analyst
latest_pt_current = defaultdict(list)
# Iterate through the filtered data to collect pt_current for each analyst
for item in unique_filtered_data:
if 'adjusted_pt_current' in item and item['adjusted_pt_current']:
analyst_name = item['analyst_name']
try:
pt_current_value = float(item['adjusted_pt_current'])
# Collect all pt_current values for each analyst
latest_pt_current[analyst_name].append(pt_current_value)
except (ValueError, TypeError):
print(f"Invalid pt_current value for analyst '{analyst_name}': {item['adjusted_pt_current']}")
# Compute statistics for price targets
# Compute statistics for price targets (removing outliers)
pt_current_values = [val for sublist in latest_pt_current.values() for val in sublist]
#remove outliers to keep high and low price target reasonable
q1, q3 = np.percentile(pt_current_values, [25, 75])
iqr = q3 - q1
pt_current_values = [x for x in pt_current_values if (q1 - 1.5 * iqr) <= x <= (q3 + 1.5 * iqr)]
# Compute different price target metrics if there are values, otherwise set to 0
if pt_current_values:
q1, q3 = np.percentile(pt_current_values, [25, 75])
iqr = q3 - q1
pt_current_values = [x for x in pt_current_values if (q1 - 1.5 * iqr) <= x <= (q3 + 1.5 * iqr)]
if pt_current_values:
median_pt_current = statistics.median(pt_current_values)
avg_pt_current = statistics.mean(pt_current_values)
@ -235,75 +208,60 @@ def get_top_analyst_summary(res_list):
else:
median_pt_current = avg_pt_current = low_pt_current = high_pt_current = 0
# Initialize recommendation tracking
# Define the rating hierarchy
rating_hierarchy = {'Strong Sell': 0, 'Sell': 1, 'Hold': 2, 'Buy': 3, 'Strong Buy': 4}
# Track monthly recommendations
# Track monthly recommendations for visualization
monthly_recommendations = {}
# Iterate through the filtered data to track monthly recommendations
for item in filtered_data:
# Extract month from the date
item_date = datetime.strptime(item['date'], '%Y-%m-%d')
month_key = item_date.strftime('%Y-%m-01')
# Initialize month's recommendation counts if not exists
if month_key not in monthly_recommendations:
monthly_recommendations[month_key] = {
'Strong Sell': 0,
'Sell': 0,
'Hold': 0,
'Buy': 0,
'Strong Buy': 0
}
monthly_recommendations[month_key] = {key: 0 for key in rating_hierarchy.keys()}
# Check and increment recommendation count for the month
if 'rating_current' in item and item['rating_current'] in rating_hierarchy:
monthly_recommendations[month_key][item['rating_current']] += 1
# Convert monthly recommendations to a sorted list
recommendation_list = []
for month in sorted(monthly_recommendations.keys()):
month_data = monthly_recommendations[month]
recommendation_list.append({
'date': month,
'Strong Sell': month_data['Strong Sell'],
'Sell': month_data['Sell'],
'Hold': month_data['Hold'],
'Buy': month_data['Buy'],
'Strong Buy': month_data['Strong Buy']
**month_data
})
# Compute consensus ratings (similar to previous implementation)
consensus_ratings = defaultdict(str)
# Build a dictionary with the latest rating per analyst
consensus_ratings = {}
for item in unique_filtered_data:
if 'rating_current' in item and item['rating_current'] and 'analyst_name' in item and item['analyst_name']:
try:
analyst_name = item['analyst_name']
current_rating = item['rating_current']
if current_rating in rating_hierarchy:
consensus_ratings[analyst_name] = current_rating
except:
pass
if item.get('rating_current') and item.get('analyst_name'):
current_rating = item['rating_current']
if current_rating in rating_hierarchy:
consensus_ratings[item['analyst_name']] = current_rating
# --- New Robust Consensus Rating Calculation ---
# Convert each valid rating into its numeric score and compute the median
rating_values = [rating_hierarchy[r] for r in consensus_ratings.values() if r in rating_hierarchy]
if rating_values:
consensus_numeric = round(statistics.median(rating_values))
# Map the numeric consensus back to its corresponding rating string
inverse_rating_hierarchy = {v: k for k, v in rating_hierarchy.items()}
consensus_rating = inverse_rating_hierarchy.get(consensus_numeric, 'Hold')
else:
consensus_rating = 'Hold'
# -------------------------------------------------
# Compute the consensus rating based on the most frequent rating among analysts
consensus_rating_counts = defaultdict(int)
for rating in consensus_ratings.values():
consensus_rating_counts[rating] += 1
consensus_rating = max(consensus_rating_counts, key=consensus_rating_counts.get)
# Sum up all Buy, Sell, Hold for the progress bar in sveltekit
data_dict = dict(consensus_rating_counts)
# Sum up the recommendation counts for Buy, Sell, and Hold for progress bar purposes
data_dict = {key: 0 for key in rating_hierarchy.keys()}
for r in consensus_ratings.values():
data_dict[r] += 1
buy_total = data_dict.get('Strong Buy', 0) + data_dict.get('Buy', 0)
sell_total = data_dict.get('Strong Sell', 0) + data_dict.get('Sell', 0)
hold_total = data_dict.get('Hold', 0)
# Count unique analysts
unique_analyst_names = set()
# Count the unique analysts used in the unique filtered data
numOfAnalyst = len(unique_filtered_data)
# Update stats dictionary with new keys including recommendationList
# Prepare the stats dictionary with all the computed values
stats = {
'numOfAnalyst': numOfAnalyst,
'consensusRating': consensus_rating,
@ -315,7 +273,6 @@ def get_top_analyst_summary(res_list):
}
categorical_ratings = {'Buy': buy_total, 'Sell': sell_total, 'Hold': hold_total}
res = {**stats, **categorical_ratings}
return res
@ -465,7 +422,6 @@ def run(chunk, analyst_list, con):
print(e)
try:
con = sqlite3.connect('stocks.db')
stock_cursor = con.cursor()
@ -479,7 +435,7 @@ try:
chunk_size = len(stock_symbols) // 300 # Divide the list into N chunks
chunks = [stock_symbols[i:i + chunk_size] for i in range(0, len(stock_symbols), chunk_size)]
chunks = [['AAPL']]
#chunks = [['AAPL']]
for chunk in chunks:
run(chunk, analyst_stats_list, con)