bugfixing

This commit is contained in:
MuslemRahimi 2025-02-18 01:04:59 +01:00
parent 7c18bb971e
commit e9a1d1cd41

View File

@ -35,7 +35,7 @@ async def download_data(ticker, start_date, end_date):
df = df.rename(columns={"Date": "ds", "Adj Close": "y"})
if len(df) > 252*2: #At least 2 years of history is necessary
q_high= df["y"].quantile(0.99)
q_low = df["y"].quantile(0.05)
q_low = df["y"].quantile(0.01)
df = df[(df["y"] > q_low)]
df = df[(df["y"] < q_high)]
#df['y'] = df['y'].rolling(window=10).mean()
@ -65,12 +65,12 @@ async def run():
total_symbols = stock_symbols
print(f"Total tickers: {len(total_symbols)}")
start_date = datetime(2020, 1, 1).strftime("%Y-%m-%d")
start_date = datetime(2017, 1, 1).strftime("%Y-%m-%d")
end_date = datetime.today().strftime("%Y-%m-%d")
chunk_size = len(total_symbols) // 70 # Divide the list into N chunks
chunks = [total_symbols[i:i + chunk_size] for i in range(0, len(total_symbols), chunk_size)]
#chunks = [['TSLA']]
#chunks = [['NVDA','GME','TSLA','AAPL']]
for chunk in chunks:
tasks = []
for ticker in tqdm(chunk):