bugfixing market movers
This commit is contained in:
parent
c3e696e1ca
commit
ebc102faf4
@ -6,6 +6,7 @@ import pandas as pd
|
||||
import asyncio
|
||||
import aiohttp
|
||||
import pytz
|
||||
from utils.helper import check_market_hours
|
||||
|
||||
from GetStartEndDate import GetStartEndDate
|
||||
|
||||
@ -18,17 +19,12 @@ load_dotenv()
|
||||
api_key = os.getenv('FMP_API_KEY')
|
||||
|
||||
|
||||
market_cap_threshold = 10E6
|
||||
market_cap_threshold = 10E9
|
||||
volume_threshold = 50_000
|
||||
|
||||
|
||||
def check_market_hours():
|
||||
|
||||
holidays = [
|
||||
"2024-01-01", "2024-01-15", "2024-02-19", "2024-03-29",
|
||||
"2024-05-27", "2024-06-19", "2024-07-04", "2024-09-02",
|
||||
"2024-11-28", "2024-12-25"
|
||||
]
|
||||
holidays = ['2025-01-01', '2025-01-09','2025-01-20', '2025-02-17', '2025-04-18', '2025-05-26', '2025-06-19', '2025-07-04', '2025-09-01', '2025-11-27', '2025-12-25']
|
||||
|
||||
# Get the current date and time in ET (Eastern Time)
|
||||
et_timezone = pytz.timezone('America/New_York')
|
||||
@ -56,68 +52,7 @@ def check_market_hours():
|
||||
|
||||
market_status = check_market_hours()
|
||||
|
||||
async def get_todays_data(ticker):
|
||||
|
||||
current_weekday = datetime.today().weekday()
|
||||
current_time_berlin = datetime.now(berlin_tz)
|
||||
is_afternoon = current_time_berlin.hour > 15 or (current_time_berlin.hour == 15 and current_time_berlin.minute >= 30)
|
||||
|
||||
start_date_1d, end_date_1d = GetStartEndDate().run()
|
||||
|
||||
url = f"https://financialmodelingprep.com/api/v3/historical-chart/1min/{ticker}?from={start_date_1d}&to={end_date_1d}&apikey={api_key}"
|
||||
|
||||
df_1d = pd.DataFrame()
|
||||
|
||||
current_date = start_date_1d
|
||||
target_time = time(15,30)
|
||||
extract_date = current_date.strftime('%Y-%m-%d')
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
responses = await asyncio.gather(session.get(url))
|
||||
|
||||
for response in responses:
|
||||
try:
|
||||
json_data = await response.json()
|
||||
df_1d = pd.DataFrame(json_data).iloc[::-1].reset_index(drop=True)
|
||||
opening_price = df_1d['open'].iloc[0]
|
||||
df_1d = df_1d.drop(['open', 'high', 'low', 'volume'], axis=1)
|
||||
df_1d = df_1d.round(2).rename(columns={"date": "time", "close": "value"})
|
||||
|
||||
if current_weekday == 5 or current_weekday == 6:
|
||||
pass
|
||||
else:
|
||||
if current_date.time() < target_time:
|
||||
pass
|
||||
else:
|
||||
end_time = pd.to_datetime(f'{extract_date} 16:00:00')
|
||||
new_index = pd.date_range(start=df_1d['time'].iloc[-1], end=end_time, freq='1min')
|
||||
|
||||
remaining_df = pd.DataFrame(index=new_index, columns=['value'])
|
||||
remaining_df = remaining_df.reset_index().rename(columns={"index": "time"})
|
||||
remaining_df['time'] = remaining_df['time'].dt.strftime('%Y-%m-%d %H:%M:%S')
|
||||
remainind_df = remaining_df.set_index('time')
|
||||
|
||||
df_1d = pd.concat([df_1d, remaining_df[1:: ]])
|
||||
#To-do FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.
|
||||
|
||||
df_1d = orjson.loads(df_1d.to_json(orient="records"))
|
||||
except:
|
||||
df_1d = []
|
||||
return df_1d
|
||||
|
||||
async def get_jsonparsed_data(session, url):
|
||||
async with session.get(url) as response:
|
||||
data = await response.json()
|
||||
return data
|
||||
|
||||
async def get_quote_of_stocks(ticker_list):
|
||||
'''
|
||||
ticker_str = ','.join(ticker_list)
|
||||
async with aiohttp.ClientSession() as session:
|
||||
url = f"https://financialmodelingprep.com/api/v3/quote/{ticker_str}?apikey={api_key}"
|
||||
async with session.get(url) as response:
|
||||
df = await response.json()
|
||||
'''
|
||||
res_list = []
|
||||
for symbol in ticker_list:
|
||||
try:
|
||||
@ -129,198 +64,126 @@ async def get_quote_of_stocks(ticker_list):
|
||||
|
||||
return res_list
|
||||
|
||||
def add_rank(data):
|
||||
for key in data:
|
||||
for index, item in enumerate(data[key], start=1):
|
||||
item['rank'] = index
|
||||
return data
|
||||
def deep_copy(data):
|
||||
if isinstance(data, dict):
|
||||
return {key: deep_copy(value) for key, value in data.items()}
|
||||
elif isinstance(data, list):
|
||||
return [deep_copy(item) for item in data]
|
||||
else:
|
||||
return data # Base case for non-nested elements (e.g., int, float, str)
|
||||
|
||||
|
||||
|
||||
async def get_gainer_loser_active_stocks(symbols):
|
||||
|
||||
#Database read 1y and 3y data
|
||||
query_fundamental_template = """
|
||||
SELECT
|
||||
marketCap
|
||||
FROM
|
||||
stocks
|
||||
WHERE
|
||||
symbol = ?
|
||||
"""
|
||||
|
||||
query_template = """
|
||||
SELECT
|
||||
volume
|
||||
FROM
|
||||
"{ticker}"
|
||||
ORDER BY
|
||||
rowid DESC
|
||||
LIMIT 1
|
||||
"""
|
||||
|
||||
async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(ssl=False)) as session:
|
||||
gainer_url = f"https://financialmodelingprep.com/api/v3/stock_market/gainers?apikey={api_key}"
|
||||
loser_url = f"https://financialmodelingprep.com/api/v3/stock_market/losers?apikey={api_key}"
|
||||
active_url = f"https://financialmodelingprep.com/api/v3/stock_market/actives?apikey={api_key}"
|
||||
|
||||
# Gather all the HTTP requests concurrently
|
||||
tasks = [
|
||||
get_jsonparsed_data(session, gainer_url),
|
||||
get_jsonparsed_data(session, loser_url),
|
||||
get_jsonparsed_data(session, active_url)
|
||||
]
|
||||
|
||||
gainer_json, loser_json, active_json = await asyncio.gather(*tasks)
|
||||
|
||||
|
||||
gainer_json = [{k: v for k, v in stock.items() if stock['symbol'] in symbols} for stock in gainer_json]
|
||||
gainer_json = [entry for entry in gainer_json if entry]
|
||||
|
||||
loser_json = [{k: v for k, v in stock.items() if stock['symbol'] in symbols} for stock in loser_json]
|
||||
loser_json = [entry for entry in loser_json if entry]
|
||||
|
||||
active_json = [{k: v for k, v in stock.items() if stock['symbol'] in symbols} for stock in active_json]
|
||||
active_json = [entry for entry in active_json if entry]
|
||||
|
||||
# Process gainer_json to add marketCap and volume data
|
||||
filtered_gainer_json = []
|
||||
for entry in gainer_json:
|
||||
try:
|
||||
symbol = entry['symbol']
|
||||
query = query_template.format(ticker=symbol)
|
||||
fundamental_data = pd.read_sql_query(query_fundamental_template, con, params=(symbol,))
|
||||
volume = pd.read_sql_query(query, con)
|
||||
entry['marketCap'] = int(fundamental_data['marketCap'].iloc[0])
|
||||
entry['volume'] = int(volume['volume'].iloc[0])
|
||||
entry['changesPercentage'] = round(entry['changesPercentage'],2)
|
||||
if entry['marketCap'] >= market_cap_threshold and entry['volume'] >= volume_threshold and abs(entry['changesPercentage']) < 500:
|
||||
filtered_gainer_json.append(entry)
|
||||
except:
|
||||
entry['marketCap'] = None
|
||||
entry['volume'] = None
|
||||
|
||||
# Process loser_json to add marketCap and volume data
|
||||
filtered_loser_json = []
|
||||
for entry in loser_json:
|
||||
try:
|
||||
symbol = entry['symbol']
|
||||
query = query_template.format(ticker=symbol)
|
||||
fundamental_data = pd.read_sql_query(query_fundamental_template, con, params=(symbol,))
|
||||
volume = pd.read_sql_query(query, con)
|
||||
entry['marketCap'] = int(fundamental_data['marketCap'].iloc[0])
|
||||
entry['volume'] = int(volume['volume'].iloc[0])
|
||||
entry['changesPercentage'] = round(entry['changesPercentage'],2)
|
||||
if entry['marketCap'] >= market_cap_threshold and entry['volume'] >= volume_threshold and abs(entry['changesPercentage']) < 500:
|
||||
filtered_loser_json.append(entry)
|
||||
except:
|
||||
entry['marketCap'] = None
|
||||
entry['volume'] = None
|
||||
|
||||
|
||||
|
||||
filtered_active_json = []
|
||||
for entry in active_json:
|
||||
try:
|
||||
symbol = entry['symbol']
|
||||
query = query_template.format(ticker=symbol)
|
||||
fundamental_data = pd.read_sql_query(query_fundamental_template, con, params=(symbol,))
|
||||
volume = pd.read_sql_query(query, con)
|
||||
entry['marketCap'] = int(fundamental_data['marketCap'].iloc[0])
|
||||
entry['volume'] = int(volume['volume'].iloc[0])
|
||||
entry['changesPercentage'] = round(entry['changesPercentage'],2)
|
||||
if abs(entry['changesPercentage']) < 500:
|
||||
filtered_active_json.append(entry)
|
||||
except:
|
||||
entry['marketCap'] = None
|
||||
entry['volume'] = None
|
||||
|
||||
|
||||
filtered_active_json = sorted(filtered_active_json, key=lambda x: (x['marketCap'] >= 10**9, x['volume']), reverse=True)
|
||||
|
||||
|
||||
# Get the original lengths
|
||||
gainer_length = len(filtered_gainer_json)
|
||||
loser_length = len(filtered_loser_json)
|
||||
active_length = len(filtered_active_json)
|
||||
|
||||
# Combine all lists
|
||||
stocks = filtered_gainer_json + filtered_loser_json + filtered_active_json
|
||||
|
||||
# Remove change key element
|
||||
stocks = [{k: v for k, v in stock.items() if k != "change"} for stock in stocks]
|
||||
|
||||
# Slice based on the original lengths
|
||||
day_gainer_json = stocks[:gainer_length]
|
||||
day_loser_json = stocks[gainer_length:gainer_length + loser_length]
|
||||
day_active_json = stocks[gainer_length + loser_length:]
|
||||
|
||||
|
||||
query_market_movers = """
|
||||
SELECT
|
||||
gainer,loser,most_active
|
||||
FROM
|
||||
market_movers
|
||||
"""
|
||||
past_gainer = pd.read_sql_query(query_market_movers, con)
|
||||
|
||||
gainer_json = eval(past_gainer['gainer'].iloc[0])
|
||||
loser_json = eval(past_gainer['loser'].iloc[0])
|
||||
active_json = eval(past_gainer['most_active'].iloc[0])
|
||||
|
||||
gainer_json['1D'] = day_gainer_json
|
||||
loser_json['1D'] = day_loser_json
|
||||
active_json['1D'] = day_active_json #sorted(day_active_json, key=lambda x: x.get('volume', 0) if x.get('volume') is not None else 0, reverse=True)
|
||||
|
||||
|
||||
data = {'gainers': gainer_json, 'losers': loser_json, 'active': active_json}
|
||||
#Extract all unique symbols from gainer,loser, active
|
||||
unique_symbols = set()
|
||||
|
||||
# Iterate through time periods, categories, and symbols
|
||||
for category in data.keys():
|
||||
for time_period in data[category].keys():
|
||||
# Add rank and process symbols
|
||||
for index, stock_data in enumerate(data[category][time_period], start=1):
|
||||
stock_data['rank'] = index # Add rank field
|
||||
symbol = stock_data["symbol"]
|
||||
unique_symbols.add(symbol)
|
||||
|
||||
# Convert the set to a list if needed
|
||||
unique_symbols_list = list(unique_symbols)
|
||||
|
||||
#Get the latest quote of all unique symbol and map it back to the original data list to update all values
|
||||
|
||||
|
||||
latest_quote = await get_quote_of_stocks(unique_symbols_list)
|
||||
# Updating values in the data list based on matching symbols from the quote list
|
||||
for category in data.keys():
|
||||
# Only proceed if the time period is "1D"
|
||||
for time_period in data[category].keys():
|
||||
if time_period == "1D":
|
||||
for stock_data in data[category][time_period]:
|
||||
symbol = stock_data["symbol"]
|
||||
quote_stock = next((item for item in latest_quote if item["symbol"] == symbol), None)
|
||||
if quote_stock:
|
||||
stock_data['price'] = quote_stock['price']
|
||||
stock_data['changesPercentage'] = quote_stock['changesPercentage']
|
||||
stock_data['marketCap'] = quote_stock['marketCap']
|
||||
stock_data['volume'] = quote_stock['volume']
|
||||
|
||||
|
||||
return data
|
||||
|
||||
|
||||
|
||||
async def get_historical_data():
|
||||
res_list = []
|
||||
ticker_list = ['SPY', 'QQQ', 'DIA', 'IWM', 'IVV']
|
||||
latest_quote = await get_quote_of_stocks(ticker_list)
|
||||
|
||||
for quote in latest_quote:
|
||||
ticker = quote['symbol']
|
||||
df = await get_todays_data(ticker)
|
||||
res_list.append({'symbol': ticker, 'priceData': df, 'changesPercentage': round(quote['changesPercentage'],2), 'previousClose': round(quote['previousClose'],2)})
|
||||
for symbol in symbols:
|
||||
try:
|
||||
# Load the main quote JSON file
|
||||
with open(f"json/quote/{symbol}.json", "r") as file:
|
||||
data = orjson.loads(file.read())
|
||||
market_cap = int(data.get('marketCap', 0))
|
||||
name = data.get('name', None)
|
||||
volume = data.get('volume', 0)
|
||||
changes_percentage = data.get("changesPercentage", None)
|
||||
price = data.get("price", None)
|
||||
|
||||
# Ensure the stock meets criteria
|
||||
if market_cap >= market_cap_threshold:
|
||||
with open(f"json/one-day-price/{symbol}.json", 'rb') as file:
|
||||
one_day_price = orjson.loads(file.read())
|
||||
# Filter out entries with None 'close'
|
||||
filtered_prices = [p for p in one_day_price if p['close'] is not None]
|
||||
|
||||
if price and changes_percentage and len(filtered_prices) > 100:
|
||||
res_list.append({
|
||||
"symbol": symbol,
|
||||
"name": name,
|
||||
"price": price,
|
||||
"volume": volume,
|
||||
"changesPercentage": changes_percentage,
|
||||
"marketCap": market_cap
|
||||
})
|
||||
except Exception as e:
|
||||
print(f"Error processing symbol {symbol}: {e}")
|
||||
continue
|
||||
|
||||
# Load past market movers data
|
||||
query_market_movers = """
|
||||
SELECT
|
||||
gainer, loser, most_active
|
||||
FROM
|
||||
market_movers
|
||||
"""
|
||||
past_gainer = pd.read_sql_query(query_market_movers, con)
|
||||
gainer_json = eval(past_gainer['gainer'].iloc[0])
|
||||
loser_json = eval(past_gainer['loser'].iloc[0])
|
||||
active_json = eval(past_gainer['most_active'].iloc[0])
|
||||
|
||||
# Initialize final data structure
|
||||
final_data = {
|
||||
'gainers': gainer_json.copy(),
|
||||
'losers': loser_json.copy(),
|
||||
'active': active_json.copy()
|
||||
}
|
||||
|
||||
# Process current data
|
||||
current_data = {
|
||||
'gainers': sorted([x for x in res_list if x['changesPercentage'] > 0],
|
||||
key=lambda x: x['changesPercentage'],
|
||||
reverse=True),
|
||||
'losers': sorted([x for x in res_list if x['changesPercentage'] < 0],
|
||||
key=lambda x: x['changesPercentage']),
|
||||
'active': sorted([x for x in res_list if x['volume'] > 0],
|
||||
key=lambda x: x['volume'],
|
||||
reverse=True)
|
||||
}
|
||||
|
||||
# Update latest quotes for current data
|
||||
unique_symbols = {stock["symbol"] for category in current_data.values() for stock in category}
|
||||
latest_quote = await get_quote_of_stocks(list(unique_symbols))
|
||||
|
||||
# Update market cap and volume with latest data
|
||||
for category in current_data.keys():
|
||||
for stock in current_data[category]:
|
||||
symbol = stock["symbol"]
|
||||
quote_stock = next((item for item in latest_quote if item["symbol"] == symbol), None)
|
||||
if quote_stock:
|
||||
stock['marketCap'] = quote_stock.get('marketCap', stock['marketCap'])
|
||||
stock['volume'] = quote_stock.get('volume', stock['volume'])
|
||||
|
||||
# Add fresh rankings to current data
|
||||
for category, stocks in current_data.items():
|
||||
# Sort again after updates
|
||||
if category == 'gainers':
|
||||
stocks.sort(key=lambda x: x['changesPercentage'], reverse=True)
|
||||
elif category == 'losers':
|
||||
stocks.sort(key=lambda x: x['changesPercentage'])
|
||||
elif category == 'active':
|
||||
stocks.sort(key=lambda x: x['volume'], reverse=True)
|
||||
|
||||
# Apply sequential rankings
|
||||
for i, stock in enumerate(stocks, 1):
|
||||
stock['rank'] = i
|
||||
|
||||
# Update the 1D data in final_data
|
||||
final_data[category]['1D'] = stocks
|
||||
|
||||
|
||||
categories = ['gainers', 'losers','active']
|
||||
#super weird bug that is only fixed with deep_copy for the ranking
|
||||
for category in categories:
|
||||
for period in ['1D', '1W', '1M', '1Y', '3Y', '5Y']:
|
||||
for rank, item in enumerate(final_data[category][period], start=1):
|
||||
# Create a deep copy of the item to avoid overwriting shared references
|
||||
final_data[category][period][rank - 1] = deep_copy(item)
|
||||
final_data[category][period][rank - 1]['rank'] = rank
|
||||
|
||||
|
||||
return final_data
|
||||
|
||||
|
||||
|
||||
return res_list
|
||||
|
||||
async def get_pre_after_market_movers(symbols):
|
||||
res_list = []
|
||||
@ -335,26 +198,22 @@ async def get_pre_after_market_movers(symbols):
|
||||
name = data.get('name',None)
|
||||
|
||||
if market_cap >= market_cap_threshold:
|
||||
try:
|
||||
with open(f"json/pre-post-quote/{symbol}.json", "r") as file:
|
||||
pre_post_data = orjson.loads(file.read())
|
||||
price = pre_post_data.get("price", None)
|
||||
changes_percentage = pre_post_data.get("changesPercentage", None)
|
||||
with open(f"json/one-day-price/{symbol}.json", 'rb') as file:
|
||||
one_day_price = orjson.loads(file.read())
|
||||
# Filter out entries where 'close' is None
|
||||
filtered_prices = [price for price in one_day_price if price['close'] is not None]
|
||||
|
||||
if price and changes_percentage and len(filtered_prices) > 100: #300
|
||||
res_list.append({
|
||||
"symbol": symbol,
|
||||
"name": name,
|
||||
"price": price,
|
||||
"changesPercentage": changes_percentage
|
||||
})
|
||||
except:
|
||||
pass
|
||||
with open(f"json/pre-post-quote/{symbol}.json", "r") as file:
|
||||
pre_post_data = orjson.loads(file.read())
|
||||
price = pre_post_data.get("price", None)
|
||||
changes_percentage = pre_post_data.get("changesPercentage", None)
|
||||
with open(f"json/one-day-price/{symbol}.json", 'rb') as file:
|
||||
one_day_price = orjson.loads(file.read())
|
||||
# Filter out entries where 'close' is None
|
||||
filtered_prices = [price for price in one_day_price if price['close'] is not None]
|
||||
|
||||
if price and changes_percentage and len(filtered_prices) > 100: #300
|
||||
res_list.append({
|
||||
"symbol": symbol,
|
||||
"name": name,
|
||||
"price": price,
|
||||
"changesPercentage": changes_percentage
|
||||
})
|
||||
except:
|
||||
pass
|
||||
|
||||
@ -402,7 +261,7 @@ try:
|
||||
con = sqlite3.connect('stocks.db')
|
||||
cursor = con.cursor()
|
||||
cursor.execute("PRAGMA journal_mode = wal")
|
||||
cursor.execute("SELECT DISTINCT symbol FROM stocks")
|
||||
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
|
||||
symbols = [row[0] for row in cursor.fetchall()]
|
||||
#Filter out tickers
|
||||
#symbols = [symbol for symbol in symbols if symbol != "STEC"]
|
||||
@ -413,9 +272,7 @@ try:
|
||||
with open(f"json/market-movers/markethours/{category}.json", 'w') as file:
|
||||
file.write(orjson.dumps(data[category]).decode("utf-8"))
|
||||
|
||||
data = asyncio.run(get_historical_data())
|
||||
with open(f"json/mini-plots-index/data.json", 'w') as file:
|
||||
file.write(orjson.dumps(data).decode("utf-8"))
|
||||
|
||||
|
||||
data = asyncio.run(get_pre_after_market_movers(symbols))
|
||||
if market_status == 1:
|
||||
@ -427,6 +284,7 @@ try:
|
||||
with open(f"json/market-movers/afterhours/{category}.json", 'w') as file:
|
||||
file.write(orjson.dumps(data[category]).decode("utf-8"))
|
||||
|
||||
|
||||
con.close()
|
||||
except Exception as e:
|
||||
print(e)
|
||||
Loading…
x
Reference in New Issue
Block a user