add market flow
This commit is contained in:
parent
e382dc2251
commit
f0e0018ab9
@ -10,8 +10,6 @@ import aiohttp
|
||||
import pytz
|
||||
import requests # Add missing import
|
||||
from collections import defaultdict
|
||||
import intrinio_sdk as intrinio
|
||||
from intrinio_sdk.rest import ApiException
|
||||
from GetStartEndDate import GetStartEndDate
|
||||
from tqdm import tqdm
|
||||
|
||||
@ -20,10 +18,6 @@ import re
|
||||
|
||||
load_dotenv()
|
||||
fmp_api_key = os.getenv('FMP_API_KEY')
|
||||
api_key = os.getenv('INTRINIO_API_KEY')
|
||||
|
||||
intrinio.ApiClient().set_api_key(api_key)
|
||||
intrinio.ApiClient().allow_retries(True)
|
||||
|
||||
|
||||
ny_tz = pytz.timezone('America/New_York')
|
||||
@ -38,11 +32,17 @@ def save_json(data):
|
||||
with open(f"{directory}/data.json", 'wb') as file: # Use binary mode for orjson
|
||||
file.write(orjson.dumps(data))
|
||||
|
||||
|
||||
def safe_round(value):
|
||||
try:
|
||||
return round(float(value), 2)
|
||||
except (ValueError, TypeError):
|
||||
return value
|
||||
|
||||
# Function to convert and match timestamps
|
||||
def add_close_to_data(price_list, data):
|
||||
for entry in data:
|
||||
formatted_time = entry['timestamp']
|
||||
|
||||
formatted_time = entry['time']
|
||||
# Match with price_list
|
||||
for price in price_list:
|
||||
if price['date'] == formatted_time:
|
||||
@ -50,46 +50,6 @@ def add_close_to_data(price_list, data):
|
||||
break # Match found, no need to continue searching
|
||||
return data
|
||||
|
||||
def parse_contract_data(option_symbol):
|
||||
# Define regex pattern to match the symbol structure
|
||||
match = re.match(r"([A-Z]+)(\d{6})([CP])(\d+)", option_symbol)
|
||||
if not match:
|
||||
raise ValueError(f"Invalid option_symbol format: {option_symbol}")
|
||||
|
||||
ticker, expiration, option_type, strike_price = match.groups()
|
||||
|
||||
return option_type
|
||||
|
||||
|
||||
async def get_intrinio_data(ticker):
|
||||
url=f"https://api-v2.intrinio.com/options/unusual_activity/{ticker}/intraday?page_size=1000&api_key={api_key}"
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(url) as response:
|
||||
data = await response.json()
|
||||
|
||||
data = data.get('trades',[])
|
||||
if data:
|
||||
res_list = []
|
||||
for item in data:
|
||||
try:
|
||||
iso_timestamp = item['timestamp'].replace('Z', '+00:00')
|
||||
# Parse timestamp and convert to New York time
|
||||
timestamp = datetime.fromisoformat(iso_timestamp).astimezone(ny_tz)
|
||||
formatted_time = timestamp.strftime('%Y-%m-%d %H:%M:%S')
|
||||
put_call = parse_contract_data(item['contract'].replace("___","").replace("__","").replace("_",''))
|
||||
if put_call == 'C':
|
||||
put_call = 'calls'
|
||||
else:
|
||||
put_call = 'puts'
|
||||
|
||||
res_list.append({'timestamp': formatted_time, 'put_call': put_call, 'cost_basis': item['total_value'], 'volume': item['total_size'], 'sentiment': item['sentiment']})
|
||||
except:
|
||||
pass
|
||||
|
||||
res_list.sort(key=lambda x: x['timestamp'])
|
||||
return res_list
|
||||
else:
|
||||
return []
|
||||
|
||||
|
||||
async def get_stock_chart_data(ticker):
|
||||
@ -110,15 +70,10 @@ async def get_stock_chart_data(ticker):
|
||||
|
||||
|
||||
|
||||
def get_market_tide(interval_5m=False):
|
||||
with open(f"json/stocks-list/sp500_constituent.json","r") as file:
|
||||
ticker_list = orjson.loads(file.read())
|
||||
ticker_list = [item['symbol'] for item in ticker_list][:10]
|
||||
|
||||
|
||||
def get_market_tide(interval_5m=True):
|
||||
res_list = []
|
||||
|
||||
# Track changes per interval
|
||||
# Track changes per interval using a defaultdict.
|
||||
delta_data = defaultdict(lambda: {
|
||||
'cumulative_net_call_premium': 0,
|
||||
'cumulative_net_put_premium': 0,
|
||||
@ -128,58 +83,58 @@ def get_market_tide(interval_5m=False):
|
||||
'put_bid_vol': 0
|
||||
})
|
||||
|
||||
# Process for each ticker (in this case only 'SPY')
|
||||
for ticker in tqdm(['SPY']):
|
||||
'''
|
||||
# Load the data from JSON.
|
||||
with open("json/options-flow/feed/data.json", "r") as file:
|
||||
data = orjson.loads(file.read())
|
||||
'''
|
||||
data = asyncio.run(get_intrinio_data(ticker))
|
||||
|
||||
# Filter and sort data for the given ticker.
|
||||
data = [item for item in data if item['ticker'] == ticker]
|
||||
data.sort(key=lambda x: x['time'])
|
||||
|
||||
ticker_options = [item for item in data if item['timestamp'].startswith(today)]
|
||||
ticker_options.sort(key=lambda x: x['timestamp'])
|
||||
|
||||
|
||||
for item in ticker_options:
|
||||
# Process each item in the data
|
||||
for item in data:
|
||||
try:
|
||||
# Parse and standardize timestamp
|
||||
dt = datetime.strptime(f"{item['timestamp']}", "%Y-%m-%d %H:%M:%S")
|
||||
|
||||
# Truncate to start of minute (for 1m summaries)
|
||||
# Combine date and time from the item.
|
||||
dt = datetime.strptime(f"{item['date']} {item['time']}", "%Y-%m-%d %H:%M:%S")
|
||||
# Truncate to the start of the minute.
|
||||
dt = dt.replace(second=0, microsecond=0)
|
||||
|
||||
# Adjust for 5-minute intervals if needed
|
||||
# Adjust for 5-minute intervals if requested.
|
||||
if interval_5m:
|
||||
dt -= timedelta(minutes=dt.minute % 5)
|
||||
# Round down minutes to the nearest 5-minute mark.
|
||||
minute = dt.minute - (dt.minute % 5)
|
||||
dt = dt.replace(minute=minute)
|
||||
|
||||
rounded_ts = dt.strftime("%Y-%m-%d %H:%M:%S")
|
||||
|
||||
# Extract metrics
|
||||
# Extract metrics.
|
||||
cost = float(item.get("cost_basis", 0))
|
||||
sentiment = item.get("sentiment", "").lower()
|
||||
put_call = item.get("put_call", "").lower()
|
||||
vol = int(item.get("volume", 1))
|
||||
sentiment = item.get("sentiment", "")
|
||||
put_call = item.get("put_call", "")
|
||||
vol = int(item.get("volume", 0))
|
||||
|
||||
# Update premium metrics
|
||||
if put_call == "calls":
|
||||
if sentiment == "bullish":
|
||||
# Update premium and volume metrics.
|
||||
if put_call == "Calls":
|
||||
if sentiment == "Bullish":
|
||||
delta_data[rounded_ts]['cumulative_net_call_premium'] += cost
|
||||
delta_data[rounded_ts]['call_ask_vol'] += vol
|
||||
elif sentiment == "bearish":
|
||||
elif sentiment == "Bearish":
|
||||
delta_data[rounded_ts]['cumulative_net_call_premium'] -= cost
|
||||
delta_data[rounded_ts]['call_bid_vol'] += vol
|
||||
elif put_call == "puts":
|
||||
if sentiment == "bullish":
|
||||
elif put_call == "Puts":
|
||||
if sentiment == "Bullish":
|
||||
delta_data[rounded_ts]['cumulative_net_put_premium'] -= cost
|
||||
delta_data[rounded_ts]['put_ask_vol'] += vol
|
||||
elif sentiment == "bearish":
|
||||
elif sentiment == "Bearish":
|
||||
delta_data[rounded_ts]['cumulative_net_put_premium'] += cost
|
||||
delta_data[rounded_ts]['put_bid_vol'] += vol
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error processing item: {e}")
|
||||
|
||||
# Calculate cumulative values over time
|
||||
# Calculate cumulative values over time.
|
||||
sorted_ts = sorted(delta_data.keys())
|
||||
cumulative = {
|
||||
'net_call_premium': 0,
|
||||
@ -191,7 +146,7 @@ def get_market_tide(interval_5m=False):
|
||||
}
|
||||
|
||||
for ts in sorted_ts:
|
||||
# Update cumulative values
|
||||
# Update cumulative values.
|
||||
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
|
||||
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
|
||||
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
|
||||
@ -199,14 +154,13 @@ def get_market_tide(interval_5m=False):
|
||||
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
|
||||
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
|
||||
|
||||
# Calculate derived metrics
|
||||
# Calculate derived metrics.
|
||||
call_volume = cumulative['call_ask'] + cumulative['call_bid']
|
||||
put_volume = cumulative['put_ask'] + cumulative['put_bid']
|
||||
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - \
|
||||
(cumulative['put_ask'] - cumulative['put_bid'])
|
||||
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - (cumulative['put_ask'] - cumulative['put_bid'])
|
||||
|
||||
res_list.append({
|
||||
'timestamp': ts,
|
||||
'time': ts,
|
||||
'ticker': ticker,
|
||||
'net_call_premium': cumulative['net_call_premium'],
|
||||
'net_put_premium': cumulative['net_put_premium'],
|
||||
@ -215,18 +169,32 @@ def get_market_tide(interval_5m=False):
|
||||
'net_volume': net_volume
|
||||
})
|
||||
|
||||
res_list.sort(key=lambda x: x['timestamp'])
|
||||
# Sort the results list by time.
|
||||
res_list.sort(key=lambda x: x['time'])
|
||||
|
||||
# Retrieve price list data (either via asyncio or from file as a fallback).
|
||||
price_list = asyncio.run(get_stock_chart_data('SPY'))
|
||||
if len(price_list) == 0:
|
||||
with open(f"json/one-day-price/'SPY'.json") as file:
|
||||
with open("json/one-day-price/SPY.json", "r") as file:
|
||||
price_list = orjson.loads(file.read())
|
||||
|
||||
# Append closing prices to the data.
|
||||
data = add_close_to_data(price_list, res_list)
|
||||
|
||||
# Ensure that each minute until 16:10:00 is present in the data.
|
||||
fields = ['net_call_premium', 'net_put_premium', 'call_volume', 'put_volume', 'net_volume', 'close']
|
||||
last_time = datetime.strptime(data[-1]['time'], "%Y-%m-%d %H:%M:%S")
|
||||
end_time = datetime.strptime("2025-02-05 16:10:00", "%Y-%m-%d %H:%M:%S")
|
||||
|
||||
return res_list
|
||||
while last_time < end_time:
|
||||
last_time += timedelta(minutes=1)
|
||||
data.append({
|
||||
'time': last_time.strftime("%Y-%m-%d %H:%M:%S"),
|
||||
'ticker': ticker,
|
||||
**{field: None for field in fields}
|
||||
})
|
||||
|
||||
return data
|
||||
|
||||
def get_top_sector_tickers():
|
||||
keep_elements = ['price', 'ticker', 'name', 'changesPercentage','netPremium','netCallPremium','netPutPremium','gexRatio','gexNetChange','ivRank']
|
||||
@ -293,55 +261,51 @@ def get_top_sector_tickers():
|
||||
|
||||
|
||||
def get_top_spy_tickers():
|
||||
keep_elements = ['price', 'ticker', 'name', 'changesPercentage','netPremium','netCallPremium','netPutPremium','gexRatio','gexNetChange','ivRank']
|
||||
with open(f"json/stocks-list/sp500_constituent.json", "r") as file:
|
||||
data = orjson.loads(file.read())
|
||||
|
||||
headers = {
|
||||
"Accept": "application/json, text/plain",
|
||||
"Authorization": api_key
|
||||
}
|
||||
url = "https://api.unusualwhales.com/api/screener/stocks"
|
||||
|
||||
querystring = {"is_s_p_500":"true"}
|
||||
|
||||
|
||||
response = requests.get(url, headers=headers, params=querystring)
|
||||
data = response.json().get('data', [])
|
||||
|
||||
updated_data = []
|
||||
for item in data[:10]:
|
||||
res_list = []
|
||||
for item in data:
|
||||
try:
|
||||
new_item = {key: safe_round(value) for key, value in item.items()}
|
||||
with open(f"json/quote/{item['ticker']}.json") as file:
|
||||
symbol = item['symbol']
|
||||
with open(f"json/options-stats/companies/{symbol}.json","r") as file:
|
||||
stats_data = orjson.loads(file.read())
|
||||
|
||||
new_item = {key: safe_round(value) for key, value in stats_data.items()}
|
||||
|
||||
with open(f"json/quote/{symbol}.json") as file:
|
||||
quote_data = orjson.loads(file.read())
|
||||
new_item['symbol'] = symbol
|
||||
new_item['name'] = quote_data['name']
|
||||
new_item['price'] = round(float(quote_data['price']), 2)
|
||||
new_item['changesPercentage'] = round(float(quote_data['changesPercentage']), 2)
|
||||
|
||||
new_item['ivRank'] = round(float(new_item['iv_rank']),2)
|
||||
new_item['gexRatio'] = new_item['gex_ratio']
|
||||
new_item['gexNetChange'] = new_item['gex_net_change']
|
||||
new_item['netCallPremium'] = new_item['net_call_premium']
|
||||
new_item['netPutPremium'] = new_item['net_put_premium']
|
||||
|
||||
new_item['netPremium'] = abs(new_item['netCallPremium'] - new_item['netPutPremium'])
|
||||
# Filter new_item to keep only specified elements
|
||||
filtered_item = {key: new_item[key] for key in keep_elements if key in new_item}
|
||||
updated_data.append(filtered_item)
|
||||
except Exception as e:
|
||||
print(f"Error processing ticker {item.get('ticker', 'unknown')}: {e}")
|
||||
if new_item['net_premium']:
|
||||
res_list.append(new_item)
|
||||
except:
|
||||
pass
|
||||
|
||||
# Add rank to each item
|
||||
for rank, item in enumerate(updated_data, 1):
|
||||
res_list = sorted(res_list, key=lambda item: item['net_premium'], reverse=True)
|
||||
|
||||
for rank, item in enumerate(res_list, 1):
|
||||
item['rank'] = rank
|
||||
|
||||
return updated_data
|
||||
return res_list
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
top_sector_tickers = {}
|
||||
|
||||
market_tide = get_market_tide()
|
||||
data = {'marketTide': market_tide}
|
||||
top_spy_tickers = get_top_spy_tickers()
|
||||
top_sector_tickers['SPY'] = top_spy_tickers[:10]
|
||||
|
||||
data = {'marketTide': market_tide, 'topSectorTickers': top_sector_tickers}
|
||||
|
||||
if data:
|
||||
save_json(data)
|
||||
'''
|
||||
sector_data = get_sector_data()
|
||||
top_sector_tickers = get_top_sector_tickers()
|
||||
@ -349,8 +313,7 @@ def main():
|
||||
top_sector_tickers['SPY'] = top_spy_tickers
|
||||
data = {'sectorData': sector_data, 'topSectorTickers': top_sector_tickers, 'marketTide': market_tide}
|
||||
'''
|
||||
if len(data) > 0:
|
||||
save_json(data)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
@ -105,7 +105,7 @@ async def main():
|
||||
#changeOI = total_open_interest - previous_open_interest
|
||||
put_call_ratio = round(put_volume/call_volume,2) if call_volume > 0 else 0
|
||||
|
||||
net_premium = net_call_premium + net_put_premium
|
||||
net_premium = net_call_premium - net_put_premium
|
||||
premium_ratio = [
|
||||
safe_round(bearish_premium),
|
||||
safe_round(neutral_premium),
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user