add fomc impact cron job
This commit is contained in:
parent
a77ae584dc
commit
f1ddcd2003
155
app/cron_fomc_impact.py
Normal file
155
app/cron_fomc_impact.py
Normal file
@ -0,0 +1,155 @@
|
|||||||
|
from datetime import datetime, timedelta
|
||||||
|
import ujson
|
||||||
|
import asyncio
|
||||||
|
import aiohttp
|
||||||
|
import os
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
import sqlite3
|
||||||
|
import pandas as pd
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
# Load environment variables
|
||||||
|
load_dotenv()
|
||||||
|
api_key = os.getenv('FMP_API_KEY')
|
||||||
|
|
||||||
|
|
||||||
|
query_template = """
|
||||||
|
SELECT date, close
|
||||||
|
FROM "{ticker}"
|
||||||
|
WHERE date BETWEEN ? AND ?
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Function to save JSON data
|
||||||
|
async def save_json(symbol, data):
|
||||||
|
with open(f'json/fomc-impact/companies/{symbol}.json', 'w') as file:
|
||||||
|
ujson.dump(data, file)
|
||||||
|
|
||||||
|
# Function to fetch data from the API
|
||||||
|
async def get_data(session, url):
|
||||||
|
async with session.get(url) as response:
|
||||||
|
data = await response.json()
|
||||||
|
return data
|
||||||
|
|
||||||
|
async def get_fomc_data():
|
||||||
|
fomc_data = []
|
||||||
|
start_date = datetime.now() - timedelta(days=365)
|
||||||
|
end_date = datetime.now()
|
||||||
|
|
||||||
|
async with aiohttp.ClientSession() as session:
|
||||||
|
current_date = start_date
|
||||||
|
while current_date < end_date:
|
||||||
|
next_date = min(current_date + timedelta(days=10), end_date)
|
||||||
|
start_str = current_date.strftime('%Y-%m-%d')
|
||||||
|
end_str = next_date.strftime('%Y-%m-%d')
|
||||||
|
|
||||||
|
url = f"https://financialmodelingprep.com/api/v3/economic_calendar?from={start_str}&to={end_str}&apikey={api_key}"
|
||||||
|
data = await get_data(session, url)
|
||||||
|
if data:
|
||||||
|
# Filter for "FOMC Economic Projections" events
|
||||||
|
fomc_events = [item for item in data if item.get('event') == "Fed Interest Rate Decision"]
|
||||||
|
fomc_data.extend(fomc_events)
|
||||||
|
|
||||||
|
# Move to the next 10-day period
|
||||||
|
current_date = next_date
|
||||||
|
|
||||||
|
filtered_data = [
|
||||||
|
{
|
||||||
|
'date': item['date'][0:10],
|
||||||
|
'changePercentage': item['changePercentage'],
|
||||||
|
'previous': item['previous'],
|
||||||
|
'actual': item['actual'],
|
||||||
|
'estimate': item['estimate']
|
||||||
|
}
|
||||||
|
for item in fomc_data
|
||||||
|
]
|
||||||
|
|
||||||
|
filtered_data = sorted(filtered_data, key=lambda x: x['date'])
|
||||||
|
|
||||||
|
return filtered_data
|
||||||
|
|
||||||
|
|
||||||
|
async def run():
|
||||||
|
fomc_dates = await get_fomc_data() # Assumed to return the list of dictionaries as provided
|
||||||
|
start_date = datetime.now() - timedelta(days=365)
|
||||||
|
end_date = datetime.now()
|
||||||
|
|
||||||
|
# Extracting the dates for filtering
|
||||||
|
fomc_dates_list = [datetime.strptime(fomc['date'], '%Y-%m-%d').date() for fomc in fomc_dates]
|
||||||
|
|
||||||
|
# Connect to SQLite databases
|
||||||
|
stock_con = sqlite3.connect('stocks.db')
|
||||||
|
etf_con = sqlite3.connect('etf.db')
|
||||||
|
|
||||||
|
stock_cursor = stock_con.cursor()
|
||||||
|
stock_cursor.execute("PRAGMA journal_mode = wal")
|
||||||
|
stock_cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%' AND marketCap >= 500E6")
|
||||||
|
stock_symbols = [row[0] for row in stock_cursor.fetchall()]
|
||||||
|
|
||||||
|
etf_cursor = etf_con.cursor()
|
||||||
|
etf_cursor.execute("PRAGMA journal_mode = wal")
|
||||||
|
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
|
||||||
|
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
|
||||||
|
|
||||||
|
total_symbols = stock_symbols + etf_symbols
|
||||||
|
for ticker in tqdm(total_symbols):
|
||||||
|
try:
|
||||||
|
query = query_template.format(ticker=ticker)
|
||||||
|
connection = stock_con if ticker in stock_symbols else etf_con
|
||||||
|
df_price = pd.read_sql_query(query, connection, params=(start_date.strftime('%Y-%m-%d'), end_date.strftime('%Y-%m-%d')))
|
||||||
|
|
||||||
|
if len(df_price) > 150 and len(fomc_dates) > 0:
|
||||||
|
# Convert 'date' column in df_price to datetime.date for comparison
|
||||||
|
df_price['date'] = pd.to_datetime(df_price['date']).dt.date
|
||||||
|
|
||||||
|
# Filter out every fifth row, unless the date is in fomc_dates
|
||||||
|
filtered_df = df_price[
|
||||||
|
(df_price.index % 5 != 0) | (df_price['date'].isin(fomc_dates_list))
|
||||||
|
]
|
||||||
|
|
||||||
|
filtered_df['date'] = filtered_df['date'].apply(lambda x: x.strftime('%Y-%m-%d'))
|
||||||
|
|
||||||
|
# Prepare the result with filtered data and original fomc_dates
|
||||||
|
fomc_data_unique = {}
|
||||||
|
for fomc in fomc_dates:
|
||||||
|
date = fomc['date']
|
||||||
|
if date not in fomc_data_unique: # Check for duplicates
|
||||||
|
fomc_data_unique[date] = {
|
||||||
|
'date': date,
|
||||||
|
'changePercentage': fomc['changePercentage'],
|
||||||
|
'previous': fomc['previous'],
|
||||||
|
'actual': fomc['actual'],
|
||||||
|
'estimate': fomc['estimate']
|
||||||
|
}
|
||||||
|
|
||||||
|
# Convert the unique FOMC data back to a list
|
||||||
|
res = {
|
||||||
|
'fomcData': list(fomc_data_unique.values()), # Ensure unique dates
|
||||||
|
'history': filtered_df.to_dict('records')
|
||||||
|
}
|
||||||
|
|
||||||
|
# Compute percentage changes for FOMC dates
|
||||||
|
for i in range(len(res['fomcData']) - 1):
|
||||||
|
current_fomc_date = res['fomcData'][i]['date']
|
||||||
|
next_fomc_date = res['fomcData'][i + 1]['date']
|
||||||
|
|
||||||
|
# Find closing prices for the current and next FOMC dates
|
||||||
|
current_price_row = filtered_df[filtered_df['date'] == current_fomc_date]
|
||||||
|
next_price_row = filtered_df[filtered_df['date'] == next_fomc_date]
|
||||||
|
|
||||||
|
if not current_price_row.empty and not next_price_row.empty:
|
||||||
|
current_price = current_price_row['close'].values[0]
|
||||||
|
next_price = next_price_row['close'].values[0]
|
||||||
|
|
||||||
|
# Calculate the percentage change
|
||||||
|
percentage_change = ((next_price - current_price) / current_price) * 100
|
||||||
|
res['fomcData'][i]['changePercentage'] = round(percentage_change,2) # Update with the new change percentage
|
||||||
|
|
||||||
|
await save_json(ticker, res)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error processing {ticker}: {e}")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Run the asyncio event loop
|
||||||
|
loop = asyncio.get_event_loop()
|
||||||
|
loop.run_until_complete(run())
|
||||||
30
app/main.py
30
app/main.py
@ -3899,6 +3899,36 @@ async def get_info_text(data:InfoText, api_key: str = Security(get_api_key)):
|
|||||||
|
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
@app.post("/fomc-impact")
|
||||||
|
async def get_fomc_impact(data: TickerData, api_key: str = Security(get_api_key)):
|
||||||
|
ticker = data.ticker
|
||||||
|
|
||||||
|
cache_key = f"fomc-impact-{ticker}"
|
||||||
|
cached_result = redis_client.get(cache_key)
|
||||||
|
if cached_result:
|
||||||
|
return StreamingResponse(
|
||||||
|
io.BytesIO(cached_result),
|
||||||
|
media_type="application/json",
|
||||||
|
headers={"Content-Encoding": "gzip"}
|
||||||
|
)
|
||||||
|
try:
|
||||||
|
with open(f"json/fomc-impact/companies/{ticker}.json", 'rb') as file:
|
||||||
|
res = orjson.loads(file.read())
|
||||||
|
except:
|
||||||
|
res = {}
|
||||||
|
|
||||||
|
data = orjson.dumps(res)
|
||||||
|
compressed_data = gzip.compress(data)
|
||||||
|
|
||||||
|
redis_client.set(cache_key, compressed_data)
|
||||||
|
redis_client.expire(cache_key,3600*3600)
|
||||||
|
|
||||||
|
return StreamingResponse(
|
||||||
|
io.BytesIO(compressed_data),
|
||||||
|
media_type="application/json",
|
||||||
|
headers={"Content-Encoding": "gzip"}
|
||||||
|
)
|
||||||
|
|
||||||
@app.get("/newsletter")
|
@app.get("/newsletter")
|
||||||
async def get_newsletter():
|
async def get_newsletter():
|
||||||
try:
|
try:
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user