bugfixing dividends

This commit is contained in:
MuslemRahimi 2025-02-22 16:46:20 +01:00
parent cd388202a5
commit f29cb1471c

View File

@ -24,8 +24,10 @@ async def save_as_json(symbol, data, file_name):
with open(f"{file_name}/{symbol}.json", 'w') as file:
ujson.dump(data, file)
async def get_data(ticker, con, etf_con, stock_symbols, etf_symbols):
try:
# Choose the appropriate table and column names
if ticker in etf_symbols:
table_name = 'etfs'
column_name = 'etf_dividend'
@ -33,68 +35,82 @@ async def get_data(ticker, con, etf_con, stock_symbols, etf_symbols):
table_name = 'stocks'
column_name = 'stock_dividend'
# Build and execute the SQL query
query_template = f"""
SELECT {column_name}, quote
SELECT {column_name}
FROM {table_name}
WHERE symbol = ?
"""
df = pd.read_sql_query(query_template,
etf_con if table_name == 'etfs' else con,
params=(ticker,))
dividend_data = orjson.loads(df[column_name].iloc[0])
res = dividend_data.get('historical', [])
df = pd.read_sql_query(
query_template,
etf_con if table_name == 'etfs' else con,
params=(ticker,)
)
# Load the JSON data
res = orjson.loads(df[column_name].iloc[0])
# Filter out records that do not have a recordDate or paymentDate
filtered_res = [item for item in res if item['recordDate'] and item['paymentDate']]
# Get the current and previous year
today = datetime.today()
current_year = str(today.year)
previous_year = str(today.year - 1)
# Compute the previous year's total dividend
previous_year_records = [item for item in filtered_res if previous_year in item['recordDate']]
previous_annual_dividend = round(sum(float(item['adjDividend']) for item in previous_year_records), 2) if previous_year_records else 0
# Calculate payout frequency
current_year_records = [item for item in filtered_res if current_year in item['recordDate']]
record_dates = sorted([datetime.strptime(item['recordDate'], '%Y-%m-%d') for item in current_year_records])
def map_frequency_to_standard(calculated_frequency):
if calculated_frequency >= 45: # Approximately weekly
return 5
elif calculated_frequency >= 10: # More frequent than quarterly but less than weekly
return 5 # Default to weekly for very frequent payments
elif calculated_frequency >= 3: # Approximately quarterly
return 4
elif calculated_frequency >= 1.5: # Approximately semi-annual
return 2
else: # Annual or less frequent
return 1
if not filtered_res:
raise ValueError("No valid dividend records found.")
if len(record_dates) > 1:
total_days = (record_dates[-1] - record_dates[0]).days
intervals = len(record_dates) - 1
average_interval = total_days / intervals if intervals > 0 else None
raw_frequency = round(365 / average_interval) if average_interval and average_interval > 0 else len(record_dates)
estimated_frequency = map_frequency_to_standard(raw_frequency)
else:
estimated_frequency = 1 # Default to annual if only one record exists
# Extract payout frequency and dividend yield from the first valid record
payout_frequency = filtered_res[0]['frequency']
dividend_yield = filtered_res[0]['yield']
# Process quote data
quote_data = orjson.loads(df['quote'].iloc[0])[0]
eps = quote_data.get('eps')
current_price = quote_data.get('price')
# Determine the period for the last year using the maximum record date
max_record_date = max(datetime.fromisoformat(item['recordDate']) for item in filtered_res)
one_year_ago = max_record_date - timedelta(days=365)
# Calculate dividend growth rate
# Sort records by record date
sorted_records = sorted(filtered_res, key=lambda x: datetime.fromisoformat(x['recordDate']))
dividend_yield = round((previous_annual_dividend / current_price) * 100, 2) if current_price else None
payout_ratio = round((1 - (eps - previous_annual_dividend) / eps) * 100, 2) if eps else None
# Get the year of the latest dividend
latest_year = datetime.fromisoformat(sorted_records[-1]['recordDate']).year
# Find the first dividend in the current year and the first dividend from previous year
latest_dividend = None
previous_year_dividend = None
for record in sorted_records:
record_date = datetime.fromisoformat(record['recordDate'])
if record_date.year == latest_year and latest_dividend is None:
latest_dividend = record['adjDividend']
elif record_date.year == latest_year - 1 and previous_year_dividend is None:
previous_year_dividend = record['adjDividend']
# Break if we found both dividends
if latest_dividend is not None and previous_year_dividend is not None:
break
# Calculate growth rate if both values exist
dividend_growth = None
if latest_dividend is not None and previous_year_dividend is not None and previous_year_dividend != 0:
dividend_growth = round(((latest_dividend - previous_year_dividend) / previous_year_dividend) * 100, 2)
# Sum up all adjDividend values for records in the last year
annual_dividend = sum(
item['adjDividend']
for item in filtered_res
if datetime.fromisoformat(item['recordDate']) >= one_year_ago
)
with open(f"json/quote/{ticker}.json","r") as file:
try:
quote_data = orjson.loads(file.read())
eps = quote_data['eps']
payout_ratio = round((1 - (eps - annual_dividend) / eps) * 100, 2) if eps else None
except:
payout_ratio = None
return {
'payoutFrequency': estimated_frequency,
'annualDividend': previous_annual_dividend,
'dividendYield': dividend_yield,
'payoutRatio': payout_ratio,
'dividendGrowth': None,
'payoutFrequency': payout_frequency,
'annualDividend': round(annual_dividend,2) if annual_dividend != None else annual_dividend,
'dividendYield': round(dividend_yield,2) if dividend_yield != None else dividend_yield,
'payoutRatio': round(payout_ratio,2) if payout_ratio != None else payout_ratio,
'dividendGrowth': dividend_growth,
'history': filtered_res,
}
@ -102,6 +118,7 @@ async def get_data(ticker, con, etf_con, stock_symbols, etf_symbols):
print(f"Error processing ticker {ticker}: {e}")
return {}
async def run():
con = sqlite3.connect('stocks.db')
cursor = con.cursor()
@ -114,7 +131,7 @@ async def run():
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
total_symbols = ['AAPL'] #stock_symbols + etf_symbols
total_symbols = ['QQQY'] #stock_symbols + etf_symbols
for ticker in tqdm(total_symbols):
res = await get_data(ticker, con, etf_con, stock_symbols, etf_symbols)