import orjson import sqlite3 import asyncio import aiohttp from tqdm import tqdm # Load stock screener data with open(f"json/stock-screener/data.json", 'rb') as file: stock_screener_data = orjson.loads(file.read()) stock_screener_data_dict = {item['symbol']: item for item in stock_screener_data} async def save_json(cap_category, data): """Save data to JSON file for specific market cap category.""" with open(f"json/market-cap/list/{cap_category}.json", 'wb') as file: # Note: 'wb' for binary write file.write(orjson.dumps(data)) async def get_quote_data(symbol): """Get quote data for a symbol from JSON file""" try: with open(f"json/quote/{symbol}.json", 'r') as file: return orjson.loads(file.read()) except FileNotFoundError: return None async def process_market_cap_category(cursor, category, condition): """Process stocks for a specific market cap category""" base_query = """ SELECT DISTINCT s.symbol, s.name, s.exchangeShortName, s.marketCap FROM stocks s WHERE {} """ full_query = base_query.format(condition) cursor.execute(full_query) raw_data = cursor.fetchall() result_list = [] for row in raw_data: symbol = row[0] quote_data = await get_quote_data(symbol) if quote_data: item = { 'symbol': symbol, 'name': row[1], 'price': quote_data.get('price'), 'changesPercentage': quote_data.get('changesPercentage'), 'marketCap': quote_data.get('marketCap'), 'revenue': None, } # Add screener data if available if symbol in stock_screener_data_dict: item['revenue'] = stock_screener_data_dict[symbol].get('revenue') result_list.append(item) # Sort by market cap and save sorted_result = sorted(result_list, key=lambda x: x['marketCap'] if x['marketCap'] else 0, reverse=True) # Add rank to each item for rank, item in enumerate(sorted_result, 1): item['rank'] = rank await save_json(category, sorted_result) print(f"Processed and saved {len(sorted_result)} stocks for {category}") return sorted_result async def run(): """Main function to run the analysis for all market cap categories""" conditions = { 'mega-cap-stocks': "marketCap >= 200e9 AND (exchangeShortName = 'NYSE' OR exchangeShortName = 'NASDAQ' OR exchangeShortName = 'AMEX')", 'large-cap-stocks': "marketCap < 200e9 AND marketCap >= 10e9 AND (exchangeShortName = 'NYSE' OR exchangeShortName = 'NASDAQ' OR exchangeShortName = 'AMEX')", 'mid-cap-stocks': "marketCap < 10e9 AND marketCap >= 2e9 AND (exchangeShortName = 'NYSE' OR exchangeShortName = 'NASDAQ' OR exchangeShortName = 'AMEX')", 'small-cap-stocks': "marketCap < 2e9 AND marketCap >= 300e6 AND (exchangeShortName = 'NYSE' OR exchangeShortName = 'NASDAQ' OR exchangeShortName = 'AMEX')", 'micro-cap-stocks': "marketCap < 300e6 AND marketCap >= 50e6 AND (exchangeShortName = 'NYSE' OR exchangeShortName = 'NASDAQ' OR exchangeShortName = 'AMEX')", 'nano-cap-stocks': "marketCap < 50e6 AND (exchangeShortName = 'NYSE' OR exchangeShortName = 'NASDAQ' OR exchangeShortName = 'AMEX')" } try: con = sqlite3.connect('stocks.db') cursor = con.cursor() cursor.execute("PRAGMA journal_mode = wal") # Process each market cap category for category, condition in conditions.items(): await process_market_cap_category(cursor, category, condition) await asyncio.sleep(1) # Small delay between categories except Exception as e: print(e) raise finally: con.close() if __name__ == "__main__": try: loop = asyncio.get_event_loop() loop.run_until_complete(run()) except Exception as e: print(e) finally: loop.close()