from ta.momentum import * from ta.trend import * from ta.volatility import * from ta.volume import * import yfinance as yf import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, classification_report from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error, r2_score from sklearn.model_selection import train_test_split import pickle from datetime import datetime import asyncio import time class TrendPredictor: def __init__(self, nth_day, path="ml_models/weights/ai_score"): self.model = RandomForestClassifier(n_estimators=1000, max_depth=500, min_samples_split=500, random_state=42, n_jobs=-1) self.scaler = MinMaxScaler() self.nth_day = nth_day self.path = path self.model_loaded = False def generate_features(self, df): new_predictors = [] df['macd'] = macd(df['close']) df['macd_signal'] = macd_signal(df['close']) df['macd_hist'] = 2*macd_diff(df['close']) df['adx'] = adx(df['high'],df['low'],df['close']) df["adx_pos"] = adx_pos(df['high'],df['low'],df['close']) df["adx_neg"] = adx_neg(df['high'],df['low'],df['close']) df['cci'] = CCIIndicator(high=df['high'], low=df['low'], close=df['close']).cci() df['mfi'] = MFIIndicator(high=df['high'], low=df['low'], close=df['close'], volume=df['volume']).money_flow_index() df['nvi'] = NegativeVolumeIndexIndicator(close=df['close'], volume=df['volume']).negative_volume_index() df['obv'] = OnBalanceVolumeIndicator(close=df['close'], volume=df['volume']).on_balance_volume() df['vpt'] = VolumePriceTrendIndicator(close=df['close'], volume=df['volume']).volume_price_trend() df['rsi'] = rsi(df["close"], window=14) df['stoch_rsi'] = stochrsi_k(df['close'], window=14, smooth1=3, smooth2=3) df['bb_hband'] = bollinger_hband(df['close'], window=14)/df['close'] df['bb_lband'] = bollinger_lband(df['close'], window=14)/df['close'] df['adi'] = acc_dist_index(high=df['high'],low=df['low'],close=df['close'],volume=df['volume']) df['cmf'] = chaikin_money_flow(high=df['high'],low=df['low'],close=df['close'],volume=df['volume'], window=20) df['emv'] = ease_of_movement(high=df['high'],low=df['low'],volume=df['volume'], window=20) df['fi'] = force_index(close=df['close'], volume=df['volume'], window= 13) df['williams'] = WilliamsRIndicator(high=df['high'], low=df['low'], close=df['close']).williams_r() df['stoch'] = stoch(df['high'], df['low'], df['close'], window=14) new_predictors+=['williams','fi','emv','cmf','adi','bb_hband','bb_lband','vpt','stoch','stoch_rsi','rsi','nvi','obv','macd','macd_signal','macd_hist','adx','adx_pos','adx_neg','cci','mfi'] return new_predictors def train_model(self, X_train, y_train): X_train = np.where(np.isinf(X_train), np.nan, X_train) X_train = np.nan_to_num(X_train) X_train = self.scaler.fit_transform(X_train) # Train model self.model.fit(X_train, y_train) with open(f'{self.path}/weights.pkl', 'wb') as f: pickle.dump(self.model, f, protocol=pickle.HIGHEST_PROTOCOL) def load_model(self): if not self.model_loaded: with open(f'{self.path}/weights.pkl', 'rb') as f: self.model = pickle.load(f) self.model_loaded = True def alpha_to_score(self, alpha): # Convert alpha (Target) to AI Score if alpha <= -20: return 1 # Very Low Alpha elif -20 < alpha <= -10: return 2 # Low Alpha elif -10 < alpha <= -5: return 3 # Low Alpha elif -5 < alpha <= 0: return 4 # Medium Alpha elif 0 < alpha <= 2: return 5 # Medium Alpha elif 2 < alpha <= 4: return 6 # High Alpha elif 4 < alpha <= 6: return 7 # High Alpha elif 6 < alpha <= 8: return 8 # High Alpha elif 8 < alpha <= 10: return 9 # High Alpha elif 10 < alpha: return 10 # Very High Alpha else: return None def predict_and_score(self, df): self.load_model() # Ensure model is loaded once latest_data = df.iloc[-1].values.reshape(1, -1) latest_data = self.scaler.fit_transform(latest_data) # Predict the class (AI score) prediction = self.model.predict(latest_data)[0] # Return structured result with ticker information and score print(f"Predicted AI Score: {prediction}") return prediction def evaluate_model(self, X_test, y_test): self.load_model() X_test = np.where(np.isinf(X_test), np.nan, X_test) X_test = np.nan_to_num(X_test) X_test = self.scaler.transform(X_test) predictions = self.model.predict(X_test) accuracy = accuracy_score(y_test, predictions) print(f"Accuracy: {accuracy}") print("Classification Report:") print(classification_report(y_test, predictions)) return accuracy async def download_data(ticker, start_date, end_date, spy_df, nth_day): df = yf.download(ticker, start=start_date, end=end_date, interval="1d") df = df.rename(columns={'Adj Close': 'close', 'Open': 'open', 'High': 'high', 'Low': 'low', 'Volume': 'volume'}) df = df.reindex(spy_df.index) df['spy_close'] = spy_df['spy_close'] df['stock_return'] = df['close'].pct_change() df['spy_return'] = df['spy_close'].pct_change() df['excess_return'] = df['stock_return'] - df['spy_return'] df["Target"] = df['excess_return'].rolling(window=nth_day).sum().shift(-nth_day)*100 # Convert the continuous Target (alpha) to a score (class) df["Target"] = df["Target"].apply(lambda x: TrendPredictor.alpha_to_score(self=None, alpha=x)) return df async def train_process(nth_day): tickers = ['KO','WMT','BA','PLD','AZN','LLY','INFN','GRMN','VVX','EPD','PII','WY','BLMN','AAP','ON','TGT','SMG','EL','EOG','ULTA','DV','PLNT','GLOB','LKQ','CWH','PSX','SO','TGT','GD','MU','NKE','AMGN','BX','CAT','PEP','LIN','ABBV','COST','MRK','HD','JNJ','PG','SPCB','CVX','SHEL','MS','GS','MA','V','JPM','XLF','DPZ','CMG','MCD','ALTM','PDD','MNST','SBUX','AMAT','ZS','IBM','SMCI','ORCL','XLK','VUG','VTI','VOO','IWM','IEFA','PEP','WMT','XOM','V','AVGO','BIDU','GOOGL','SNAP','DASH','SPOT','NVO','META','MSFT','ADBE','DIA','PFE','BAC','RIVN','NIO','CISS','INTC','AAPL','BYND','MSFT','HOOD','MARA','SHOP','CRM','PYPL','UBER','SAVE','QQQ','IVV','SPY','EVOK','GME','F','NVDA','AMD','AMZN','TSM','TSLA'] tickers = list(set(tickers)) #print(len(tickers)) df_train = pd.DataFrame() df_test = pd.DataFrame() best_features = ['close','williams','fi','emv','adi','cmf','bb_hband','bb_lband','vpt','stoch','stoch_rsi','rsi','nvi','macd','mfi','cci','obv','adx','adx_pos','adx_neg'] test_size = 0.1 start_date = datetime(2000, 1, 1).strftime("%Y-%m-%d") end_date = datetime.today().strftime("%Y-%m-%d") predictor = TrendPredictor(nth_day=nth_day) spy_df = yf.download("SPY", start=start_date, end=end_date, interval="1d") spy_df = spy_df.rename(columns={'Adj Close': 'spy_close'}) tasks = [download_data(ticker, start_date, end_date, spy_df, nth_day) for ticker in tickers] dfs = await asyncio.gather(*tasks) for df in dfs: try: predictors = predictor.generate_features(df) predictors = [pred for pred in predictors if pred in df.columns] df = df.dropna(subset=df.columns[df.columns != "nth_day"]) split_size = int(len(df) * (1-test_size)) train_data = df.iloc[:split_size] test_data = df.iloc[split_size:] df_train = pd.concat([df_train, train_data], ignore_index=True) df_test = pd.concat([df_test, test_data], ignore_index=True) except: pass df_train = df_train.sample(frac=1).reset_index(drop=True) predictor.train_model(df_train[best_features], df_train['Target']) predictor.evaluate_model(df_test[best_features], df_test['Target']) async def test_process(nth_day): best_features = ['close','williams','fi','emv','adi','cmf','bb_hband','bb_lband','vpt','stoch','stoch_rsi','rsi','nvi','macd','mfi','cci','obv','adx','adx_pos','adx_neg'] test_size = 0.1 start_date = datetime(2000, 1, 1).strftime("%Y-%m-%d") end_date = datetime.today().strftime("%Y-%m-%d") predictor = TrendPredictor(nth_day=nth_day) spy_df = yf.download("SPY", start=start_date, end=end_date, interval="1d") spy_df = spy_df.rename(columns={'Adj Close': 'spy_close'}) df = await download_data('AAPL', start_date, end_date, spy_df, nth_day) predictors = predictor.generate_features(df) #save it to get the latest date with the latest row otherwise it drops it since of NaN for Target df_copy = df.copy() df = df.dropna(subset=df.columns[df.columns != "nth_day"]) split_size = int(len(df) * (1-test_size)) test_data = df.iloc[split_size:] predictor.evaluate_model(test_data[best_features], test_data['Target']) #Evaluate based on non-nan results of target but predict the latest date predictor.predict_and_score(df_copy[best_features]) print(df_copy) async def main(): nth_day = 60 # 60 days forward prediction await train_process(nth_day = 60) #await test_process(nth_day = 60) if __name__ == "__main__": asyncio.run(main())