backend/app/cron_business_metrics.py
MuslemRahimi 6462cfa259 update
2024-10-23 14:54:39 +02:00

468 lines
19 KiB
Python

from edgar import *
import ast
import ujson
from tqdm import tqdm
from datetime import datetime
from collections import defaultdict
import re
#Tell the SEC who you are
set_identity("Max Mustermann max.mustermann@indigo.com")
# Define quarter-end dates for a given year
#The last quarter Q4 result is not shown in any sec files
#But using the https://www.sec.gov/Archives/edgar/data/1045810/000104581024000029/nvda-20240128.htm 10-K you see the annual end result which can be subtracted with all Quarter results to obtain Q4 (dumb af but works so don't judge me people)
def format_name(name):
# Step 1: Insert spaces between camel case transitions (lowercase followed by uppercase)
formatted_name = re.sub(r'([a-z])([A-Z])', r'\1 \2', name)
# Step 2: Replace "And" with "&"
formatted_name = formatted_name.replace("And", " & ").replace('Revenue','')
return formatted_name
def add_value_growth(data):
"""
Adds a new key 'valueGrowth' to each entry in the data list.
Parameters:
- data (list): A list of dictionaries containing date and value lists.
Returns:
- list: A new list with the 'valueGrowth' key added to each dictionary.
"""
# Initialize a new list for the output data
updated_data = []
# Loop through the data from the latest to the oldest
for i in range(len(data)):
try:
current_entry = data[i].copy() # Create a copy of the current entry
current_values = current_entry['value']
# Initialize the growth percentages list
if i < len(data) - 1: # Only compute growth if there is a next entry
next_values = data[i + 1]['value']
growth_percentages = []
for j in range(len(current_values)):
# Convert values to integers if they are strings
next_value = int(next_values[j]) if isinstance(next_values[j], (int, str)) else 0
current_value = int(current_values[j]) if isinstance(current_values[j], (int, str)) else 0
# Calculate growth percentage if next_value is not zero
if next_value != 0:
growth = round(((current_value - next_value) / next_value) * 100,2)
else:
growth = None # Cannot calculate growth if next value is zero
growth_percentages.append(growth)
current_entry['valueGrowth'] = growth_percentages # Add the growth percentages
else:
current_entry['valueGrowth'] = [None] * len(current_values) # No growth for the last entry
updated_data.append(current_entry) # Append the updated entry to the output list
except:
pass
return updated_data
def sort_by_latest_date_and_highest_value(data):
# Define a key function to convert the date string to a datetime object
# and use the negative of the integer value for descending order
def sort_key(item):
date = datetime.strptime(item['date'], '%Y-%m-%d')
value = -int(item['value']) # Negative for descending order
return (date, value)
# Sort the list
sorted_data = sorted(data, key=sort_key, reverse=True)
return sorted_data
def aggregate_other_values(data):
aggregated = defaultdict(int)
result = []
# First pass: aggregate 'Other' values and keep non-'Other' items
for item in data:
date = item['date']
value = int(item['value'])
if item['name'] == 'Other':
aggregated[date] += value
else:
result.append(item)
# Second pass: add aggregated 'Other' values
for date, value in aggregated.items():
result.append({'name': 'Other', 'value': int(value), 'date': date})
return sorted(result, key=lambda x: (x['date'], x['name']))
# Define quarter-end dates for a given year
def closest_quarter_end(date_str):
date = datetime.strptime(date_str, "%Y-%m-%d")
year = date.year
# Define quarter end dates for the current year
q1 = datetime(year, 3, 31)
q2 = datetime(year, 6, 30)
q3 = datetime(year, 9, 30)
q4 = datetime(year, 12, 31)
# If the date is in January, return the last day of Q4 of the previous year
if date.month == 1:
closest = datetime(year - 1, 12, 31) # Last quarter of the previous year
else:
# Adjust to next year's Q4 if the date is in the last quarter of the current year
if date >= q4:
closest = q4.replace(year=year + 1) # Next year's last quarter
else:
# Find the closest quarter date
closest = min([q1, q2, q3, q4], key=lambda d: abs(d - date))
# Return the closest quarter date in 'YYYY-MM-DD' format
return closest.strftime("%Y-%m-%d")
def compute_q4_results(dataset):
# Group data by year and name
yearly_data = defaultdict(lambda: defaultdict(dict))
for item in dataset:
date = datetime.strptime(item['date'], '%Y-%m-%d')
year = date.year
quarter = (date.month - 1) // 3 + 1
yearly_data[year][item['name']][quarter] = item['value']
# Calculate Q4 results and update dataset
for year in sorted(yearly_data.keys(), reverse=True):
for name, quarters in yearly_data[year].items():
if 4 in quarters: # This is the year-end total
total = quarters[4]
q1 = quarters.get(1, 0)
q2 = quarters.get(2, 0)
q3 = quarters.get(3, 0)
q4_value = total - (q1 + q2 + q3)
# Update the original dataset
for item in dataset:
if item['name'] == name and item['date'] == f'{year}-12-31':
item['value'] = q4_value
break
return dataset
def generate_geography_dataset(dataset):
country_replacements = {
"americas": "United States",
"unitedstates": "United States",
"videogamebrandsunitedstates": "United States",
"greaterchina": "China",
"country:us": "United States",
"country:cn": "China",
"chinaincludinghongkong": "China"
}
# Custom order for specific countries
custom_order = {
'United States': 2,
'China': 1,
'Other': 0
}
aggregated_data = {}
for item in dataset:
try:
name = item.get('name', '').lower()
date = item.get('date')
value = int(float(item.get('value', 0)))
year = int(date[:4])
if year < 2019:
continue # Skip this item if the year is less than 2019
# Replace country name if necessary
country_name = country_replacements.get(name, 'Other')
# Use (country_name, date) as the key to sum values
key = (country_name, date)
if key in aggregated_data:
aggregated_data[key] += value # Add the value if the country-date pair exists
else:
aggregated_data[key] = value # Initialize the value if new country-date pair
except:
pass
# Convert the aggregated data back into the desired list format
dataset = [{'name': country, 'date': date, 'value': total_value} for (country, date), total_value in aggregated_data.items()]
dataset = aggregate_other_values(dataset)
dataset = sorted(
dataset,
key=lambda item: (datetime.strptime(item['date'], '%Y-%m-%d'), custom_order.get(item['name'], 3)),
reverse = True
)
#dataset = compute_q4_results(dataset)
result = {}
unique_names = sorted(
list(set(item['name'] for item in dataset if item['name'] not in {'CloudServiceAgreements'})),
key=lambda item: custom_order.get(item, 4), # Use 4 as default for items not in custom_order
reverse=True)
result = {}
# Iterate through the original data
for item in dataset:
# Get the date and value
date = item['date']
value = item['value']
# Initialize the dictionary for the date if not already done
if date not in result:
result[date] = {'date': date, 'value': []}
# Append the value to the list
result[date]['value'].append(value)
# Convert the result dictionary to a list
res_list = list(result.values())
# Print the final result
res_list = add_value_growth(res_list)
final_result = {'names': unique_names, 'history': res_list}
return final_result
def generate_revenue_dataset(dataset):
name_replacements = {
"datacenter": "Data Center",
"professionalvisualization": "Visualization",
"oemandother": "OEM & Other",
"automotive": "Automotive",
"oemip": "OEM & Other",
"gaming": "Gaming",
"mac": "Mac",
"iphone": "IPhone",
"ipad": "IPad",
"wearableshomeandaccessories": "Wearables",
"hardwareandaccessories": "Hardware & Accessories",
"software": "Software",
"collectibles": "Collectibles",
"automotivesales": "Auto",
"automotiveleasing": "Auto Leasing",
"energygenerationandstoragesegment": "Energy and Storage",
"servicesandother": "Services & Other",
"automotiveregulatorycredits": "Regulatory Credits",
"intelligentcloud": "Intelligent Cloud",
"productivityandbusinessprocesses": "Productivity & Business",
"searchandnewsadvertising": "Advertising",
"linkedincorporation": "LinkedIn",
"morepersonalcomputing": "More Personal Computing",
"serviceother": "Service Other",
"governmentoperatingsegment": "Government Operating Segment",
"internationaldevelopmentallicensedmarketsandcorporate": "License Market",
"youtubeadvertisingrevenue": "Youtube Ads",
"googleadvertisingrevenue": "Google Ads",
"cloudservicesandlicensesupport": "Cloude Services & Support",
"infrastructurecloudservicesandlicensesupport": "Infrastructure Cloud",
"applicationscloudservicesandlicensesupport": "Application Cloud"
}
excluded_names = {'government','enterpriseembeddedandsemicustom','computingandgraphics','automotiveleasing ','officeproductsandcloudservices','serverproductsandcloudservices','automotiverevenues','automotive','computeandnetworking','graphics','gpu','automotivesegment','energygenerationandstoragesales','energygenerationandstorage','automotivesaleswithoutresalevalueguarantee','salesandservices','compute', 'networking', 'cloudserviceagreements', 'digital', 'allother', 'preownedvideogameproducts'}
dataset = [item for item in dataset if item['name'].lower() not in excluded_names]
# Find all unique names and dates
all_dates = sorted(set(item['date'] for item in dataset))
all_names = sorted(set(item['name'] for item in dataset))
dataset = [revenue for revenue in dataset if revenue['name'].lower() not in excluded_names]
# Check and fill missing combinations at the beginning
name_date_map = defaultdict(lambda: defaultdict(lambda: None))
for item in dataset:
name_date_map[item['name']][item['date']] = item['value']
# Ensure all names have entries for all dates
for name in all_names:
for date in all_dates:
if date not in name_date_map[name]:
dataset.append({'name': name, 'date': date, 'value': None})
# Clean and process the dataset values
processed_dataset = []
for item in dataset:
if item['value'] not in (None, '', 0):
processed_dataset.append({
'name': item['name'],
'date': item['date'],
'value': int(float(item['value']))
})
else:
processed_dataset.append({
'name': item['name'],
'date': item['date'],
'value': None
})
dataset = processed_dataset
#If the last value of the latest date is null or 0 remove all names in the list
dataset = sorted(dataset, key=lambda item: datetime.strptime(item['date'], '%Y-%m-%d'), reverse=True)
remember_names = set() # Use a set for faster membership checks
first_date = dataset[0]['date']
# Iterate through dataset to remember names where date matches first_date and value is None
for item in dataset:
if item['date'] == first_date and (item['value'] == None or item['value'] == 0):
remember_names.add(item['name'])
print(item['name'])
# Use list comprehension to filter items not in remember_names
dataset = [{**item} for item in dataset if item['name'] not in remember_names]
dataset = [ item for item in dataset if datetime.strptime(item['date'], '%Y-%m-%d').year >= 2019]
# Group by name and calculate total value
name_totals = defaultdict(int)
for item in dataset:
name_totals[item['name']] += item['value'] if item['value'] != None else 0
# Sort names by total value and get top 5, ensuring excluded names are not considered
top_names = sorted(
[(name, total) for name, total in name_totals.items() if name.lower() not in excluded_names],
key=lambda x: x[1],
reverse=True
)[:5]
top_names = [name for name, _ in top_names]
# Filter dataset to include only top 5 names
dataset = [item for item in dataset if item['name'] in top_names]
# Sort the dataset
dataset.sort(key=lambda item: (datetime.strptime(item['date'], '%Y-%m-%d'), item['value'] if item['value'] != None else 0), reverse=True)
top_names = [name_replacements.get(name.lower(), format_name(name)) for name in top_names]
print(top_names)
result = {}
for item in dataset:
date = item['date']
value = item['value']
if date not in result:
result[date] = {'date': date, 'value': []}
result[date]['value'].append(value)
# Convert the result dictionary to a list
res_list = list(result.values())
# Add value growth (assuming add_value_growth function exists)
res_list = add_value_growth(res_list)
final_result = {'names': top_names, 'history': res_list}
return final_result
def process_filings(filings, symbol):
revenue_sources = []
geography_sources = []
for i in range(0,17):
try:
filing_xbrl = filings[i].xbrl()
facts = filing_xbrl.facts.data
latest_rows = facts.groupby('dimensions').head(1)
for index, row in latest_rows.iterrows():
dimensions_str = row.get("dimensions", "{}")
try:
dimensions_dict = ast.literal_eval(dimensions_str) if isinstance(dimensions_str, str) else dimensions_str
except (ValueError, SyntaxError):
dimensions_dict = {}
#print(dimensions_dict)
for column_name in [
"srt:StatementGeographicalAxis",
"us-gaap:StatementBusinessSegmentsAxis",
"srt:ProductOrServiceAxis",
]:
product_dimension = dimensions_dict.get(column_name) if isinstance(dimensions_dict, dict) else None
if row["namespace"] == "us-gaap" and product_dimension is not None and (
product_dimension.startswith(symbol.lower() + ":") or
product_dimension.startswith("country" + ":") or
product_dimension.startswith("us-gaap"+":") or
product_dimension.startswith("srt"+":") or
product_dimension.startswith("goog"+":")
):
replacements = {
"Member": "",
"VideoGameAccessories": "HardwareAndAccessories",
"NewVideoGameHardware": "HardwareAndAccessories",
"NewVideoGameSoftware": "Software",
f"{symbol.lower()}:": "",
"goog:": "",
"us-gaap:": "",
"srt:": "",
"SegmentMember": "",
}
name = product_dimension
for old, new in replacements.items():
name = name.replace(old, new)
if symbol in ['ORCL','SAVE','BA','NFLX','LLY','MSFT','META','NVDA','AAPL','GME']:
column_list = ["srt:ProductOrServiceAxis"]
else:
column_list = ["srt:ProductOrServiceAxis", "us-gaap:StatementBusinessSegmentsAxis"]
if column_name in column_list:
revenue_sources.append({"name": name, "value": row["value"], "date": row["end_date"]})
else:
geography_sources.append({"name": name, "value": row["value"], "date": row["end_date"]})
except Exception as e:
print(e)
return revenue_sources, geography_sources
def run(symbol):
# First try with 10-Q filings only
filings = Company(symbol).get_filings(form=["10-Q"]).latest(20)
revenue_sources, geography_sources = process_filings(filings, symbol)
# If no geography sources found, try with 10-K filings
if not geography_sources:
print(f"No geography sources found in 10-Q for {symbol}, checking 10-K filings...")
filings_10k = Company(symbol).get_filings(form=["10-K"]).latest(20)
_, geography_sources = process_filings(filings_10k, symbol)
print(revenue_sources)
#print(geography_sources)
revenue_dataset = generate_revenue_dataset(revenue_sources)
geographic_dataset = generate_geography_dataset(geography_sources)
final_dataset = {'revenue': revenue_dataset, 'geographic': geographic_dataset}
with open(f"json/business-metrics/{symbol}.json", "w") as file:
ujson.dump(final_dataset, file)
if __name__ == "__main__":
for symbol in ['ORCL']: #['ORCL','GOOGL','AMD','SAVE','BA','ADBE','NFLX','PLTR','MSFT','META','TSLA','NVDA','AAPL','GME']:
run(symbol)