backend/app/create_institute_db.py
2024-05-28 15:34:43 +02:00

284 lines
10 KiB
Python
Executable File

import aiohttp
import asyncio
import sqlite3
import certifi
import json
import pandas as pd
from tqdm import tqdm
import re
import pandas as pd
from datetime import datetime
import subprocess
import time
import warnings
from dotenv import load_dotenv
import os
# Filter out the specific RuntimeWarning
warnings.filterwarnings("ignore", category=RuntimeWarning, message="invalid value encountered in scalar divide")
con = sqlite3.connect('stocks.db')
etf_con = sqlite3.connect('etf.db')
crypto_con = sqlite3.connect('crypto.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
cursor.execute("SELECT DISTINCT symbol FROM stocks")
stock_symbols = [row[0] for row in cursor.fetchall()]
etf_cursor = etf_con.cursor()
etf_cursor.execute("PRAGMA journal_mode = wal")
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
crypto_cursor = crypto_con.cursor()
crypto_cursor.execute("PRAGMA journal_mode = wal")
crypto_cursor.execute("SELECT DISTINCT symbol FROM cryptos")
crypto_symbols = [row[0] for row in crypto_cursor.fetchall()]
total_symbols = stock_symbols + etf_symbols + crypto_symbols
con.close()
etf_con.close()
crypto_con.close()
load_dotenv()
api_key = os.getenv('FMP_API_KEY')
quarter_date = '2024-3-31'
if os.path.exists("backup_db/institute.db"):
os.remove('backup_db/institute.db')
def get_jsonparsed_data(data):
try:
return json.loads(data)
except json.JSONDecodeError:
return {}
class InstituteDatabase:
def __init__(self, db_path):
self.db_path = db_path
self.conn = sqlite3.connect(db_path)
self.cursor = self.conn.cursor()
self.cursor.execute("PRAGMA journal_mode = wal")
self.conn.commit()
self._create_table()
def close_connection(self):
self.cursor.close()
self.conn.close()
def _create_table(self):
self.cursor.execute("""
CREATE TABLE IF NOT EXISTS institutes (
cik TEXT PRIMARY KEY,
name TEXT
)
""")
def get_column_type(self, value):
column_type = ""
if isinstance(value, str):
column_type = "TEXT"
elif isinstance(value, int):
column_type = "INTEGER"
elif isinstance(value, float):
column_type = "REAL"
else:
# Handle other data types or customize based on your specific needs
column_type = "TEXT"
return column_type
def remove_null(self, value):
if isinstance(value, str) and value == None:
value = 'n/a'
elif isinstance(value, int) and value == None:
value = 0
elif isinstance(value, float) and value == None:
value = 0
else:
# Handle other data types or customize based on your specific needs
pass
return value
async def save_portfolio_data(self, session, cik):
try:
urls = [
f"https://financialmodelingprep.com/api/v4/institutional-ownership/industry/portfolio-holdings-summary?cik={cik}&date={quarter_date}&page=0&apikey={api_key}",
f"https://financialmodelingprep.com/api/v4/institutional-ownership/portfolio-holdings?cik={cik}&date={quarter_date}&page=0&apikey={api_key}",
f"https://financialmodelingprep.com/api/v4/institutional-ownership/portfolio-holdings-summary?cik={cik}&date={quarter_date}&page=0&apikey={api_key}"
]
portfolio_data = {}
for url in urls:
async with session.get(url) as response:
data = await response.text()
parsed_data = get_jsonparsed_data(data)
try:
if isinstance(parsed_data, list) and "industry/portfolio-holdings-summary" in url:
# Handle list response, save as JSON object
portfolio_data['industry'] = json.dumps(parsed_data)
if isinstance(parsed_data, list) and "https://financialmodelingprep.com/api/v4/institutional-ownership/portfolio-holdings?cik=" in url:
# Handle list response, save as JSON object
parsed_data = [
{**item, 'type': ('stocks' if item['symbol'] in stock_symbols else
'crypto' if item['symbol'] in crypto_symbols else
'etf' if item['symbol'] in etf_symbols else None)}
for item in parsed_data
if 'symbol' in item and item['symbol'] is not None and item['symbol'] in total_symbols
]
portfolio_data['holdings'] = json.dumps(parsed_data)
number_of_stocks = len(parsed_data)
#total_market_value = sum(item['marketValue'] for item in parsed_data)
#avg_performance_percentage = sum(item['performancePercentage'] for item in parsed_data) / len(parsed_data)
performance_percentages = [item.get("performancePercentage", 0) for item in parsed_data]
positive_performance_count = sum(1 for percentage in performance_percentages if percentage > 0)
win_rate = round(positive_performance_count / len(performance_percentages) * 100,2)
data_dict = {
'winRate': win_rate,
'numberOfStocks': number_of_stocks,
#'marketValue': total_market_value,
}
portfolio_data.update(data_dict)
elif isinstance(parsed_data, list) and "https://financialmodelingprep.com/api/v4/institutional-ownership/portfolio-holdings-summary" in url:
# Handle list response, save as JSON object
portfolio_data['summary'] = json.dumps(parsed_data)
data_dict = {
#'numberOfStocks': parsed_data[0]['portfolioSize'],
'marketValue': parsed_data[0]['marketValue'],
'averageHoldingPeriod': parsed_data[0]['averageHoldingPeriod'],
'turnover': parsed_data[0]['turnover'],
'performancePercentage3year': parsed_data[0]['performancePercentage3year'],
#'performancePercentage': parsed_data[0]['performancePercentage']
}
portfolio_data.update(data_dict)
except:
pass
# Check if columns already exist in the table
self.cursor.execute("PRAGMA table_info(institutes)")
columns = {column[1]: column[2] for column in self.cursor.fetchall()}
holdings_list = json.loads(portfolio_data['holdings'])
symbols_to_check = {holding['symbol'] for holding in holdings_list[:3]} # Extract the first two symbols
symbols_not_in_list = not any(symbol in total_symbols for symbol in symbols_to_check)
if symbols_not_in_list or 'industry' not in portfolio_data or len(json.loads(portfolio_data['industry'])) == 0:
# If 'industry' is not a list, delete the row and return
#print(f"Deleting row for cik {cik} because 'industry' is not a list.")
self.cursor.execute("DELETE FROM institutes WHERE cik = ?", (cik,))
self.conn.commit()
return
# Update column definitions with keys from portfolio_data
column_definitions = {
key: (self.get_column_type(portfolio_data.get(key, None)), self.remove_null(portfolio_data.get(key, None)))
for key in portfolio_data
}
for column, (column_type, value) in column_definitions.items():
if column not in columns and column_type:
self.cursor.execute(f"ALTER TABLE institutes ADD COLUMN {column} {column_type}")
self.cursor.execute(f"UPDATE institutes SET {column} = ? WHERE cik = ?", (value, cik))
self.conn.commit()
except Exception as e:
print(f"Failed to fetch portfolio data for cik {cik}: {str(e)}")
async def save_insitute(self, institutes):
institute_data = []
for item in institutes:
cik = item.get('cik', '')
name = item.get('name', '')
institute_data.append((cik, name))
self.cursor.execute("BEGIN TRANSACTION") # Begin a transaction
for data in institute_data:
cik, name = data
self.cursor.execute("""
INSERT OR IGNORE INTO institutes (cik, name)
VALUES (?, ?)
""", (cik, name))
self.cursor.execute("""
UPDATE institutes SET name = ?
WHERE cik = ?
""", (name, cik))
self.cursor.execute("COMMIT") # Commit the transaction
self.conn.commit()
# Save OHLC data for each ticker using aiohttp
async with aiohttp.ClientSession() as session:
tasks = []
i = 0
for item in tqdm(institute_data):
cik, name = item
tasks.append(self.save_portfolio_data(session, cik))
i += 1
if i % 700 == 0:
await asyncio.gather(*tasks)
tasks = []
print('sleeping mode: ', i)
await asyncio.sleep(60) # Pause for 60 seconds
if tasks:
await asyncio.gather(*tasks)
url = f"https://financialmodelingprep.com/api/v4/institutional-ownership/list?apikey={api_key}"
async def fetch_tickers():
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
data = await response.text()
return get_jsonparsed_data(data)
db = InstituteDatabase('backup_db/institute.db')
loop = asyncio.get_event_loop()
all_tickers = loop.run_until_complete(fetch_tickers())
loop.run_until_complete(db.save_insitute(all_tickers))
db.close_connection()