backend/app/cron_price_analysis.py
MuslemRahimi 1049780b1f bugfixing
2025-02-20 15:04:01 +01:00

116 lines
3.9 KiB
Python
Executable File

import ujson
import asyncio
import aiohttp
import sqlite3
from datetime import datetime
from ml_models.prophet_model import PricePredictor
import pandas as pd
from tqdm import tqdm
import concurrent.futures
import orjson
import os
def convert_symbols(symbol_list):
converted_symbols = []
for symbol in symbol_list:
# Determine the base and quote currencies
base_currency = symbol[:-3]
quote_currency = symbol[-3:]
# Construct the new symbol in the desired format
new_symbol = f"{base_currency}-{quote_currency}"
converted_symbols.append(new_symbol)
return converted_symbols
async def save_json(symbol, data):
with open(f"json/price-analysis/{symbol}.json", 'w') as file:
ujson.dump(data, file)
async def download_data(ticker: str, start_date: str, end_date: str):
try:
with open(f"json/historical-price/max/{ticker}.json", "r") as file:
data = orjson.loads(file.read())
df = pd.DataFrame(data)
# Rename columns to ensure consistency
df = df.rename(columns={"Date": "ds", "Adj Close": "y", "time": "ds", "close": "y"})
# Ensure correct data types
df["ds"] = pd.to_datetime(df["ds"])
df["y"] = df["y"].astype(float)
# Convert start_date and end_date from string to datetime
start_date = pd.to_datetime(start_date, format="%Y-%m-%d")
end_date = pd.to_datetime(end_date, format="%Y-%m-%d")
# Filter data based on start_date and end_date
df = df[(df["ds"] >= start_date) & (df["ds"] <= end_date)]
# Apply filtering logic if enough data exists
if len(df) > 252 * 2: # At least 2 years of history is necessary
q_high = df["y"].quantile(0.99)
q_low = df["y"].quantile(0.1)
df = df[(df["y"] > q_low) & (df["y"] < q_high)]
# Calculate Simple Moving Average (SMA)
#df["y"] = df["y"].rolling(window=50).mean() # 50-day SMA
return df.dropna() # Drop initial NaN values due to rolling window
except Exception as e:
print(f"Error processing {ticker}: {e}")
return None
async def process_symbol(ticker, start_date, end_date):
try:
df = await download_data(ticker, start_date, end_date)
data = PricePredictor().run(df)
file_path = f"json/price-analysis/{ticker}.json"
if data and data['lowPriceTarget'] > 0:
print(data)
await save_json(ticker, data)
else:
await asyncio.to_thread(os.remove, file_path)
except Exception as e:
try:
await asyncio.to_thread(os.remove, file_path)
except FileNotFoundError:
pass # The file might not exist, so we ignore the error
async def run():
con = sqlite3.connect('stocks.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE marketCap > 1E9")
stock_symbols = [row[0] for row in cursor.fetchall()]
con.close()
total_symbols = stock_symbols
print(f"Total tickers: {len(total_symbols)}")
start_date = datetime(2015, 1, 1).strftime("%Y-%m-%d")
end_date = datetime.today().strftime("%Y-%m-%d")
df_sp500 = await download_data('SPY', start_date, end_date)
df_sp500 = df_sp500.rename(columns={"y": "sp500"})
#print(df_sp500)
chunk_size = len(total_symbols) // 70 # Divide the list into N chunks
chunks = [total_symbols[i:i + chunk_size] for i in range(0, len(total_symbols), chunk_size)]
#chunks = [['GME']]
for chunk in chunks:
tasks = []
for ticker in tqdm(chunk):
tasks.append(process_symbol(ticker, start_date, end_date))
await asyncio.gather(*tasks)
try:
asyncio.run(run())
except Exception as e:
print(e)