190 lines
7.1 KiB
Python
190 lines
7.1 KiB
Python
import aiohttp
|
|
import aiofiles
|
|
import ujson
|
|
import orjson
|
|
import sqlite3
|
|
import asyncio
|
|
import pandas as pd
|
|
import time
|
|
import os
|
|
from dotenv import load_dotenv
|
|
from datetime import datetime, timedelta
|
|
from ta.momentum import *
|
|
from tqdm import tqdm
|
|
import pytz
|
|
|
|
headers = {"accept": "application/json"}
|
|
url = "https://api.benzinga.com/api/v2.1/calendar/earnings"
|
|
load_dotenv()
|
|
api_key = os.getenv('BENZINGA_API_KEY')
|
|
|
|
ny_tz = pytz.timezone('America/New_York')
|
|
today = datetime.now(ny_tz).replace(hour=0, minute=0, second=0, microsecond=0)
|
|
min_date = ny_tz.localize(datetime.strptime("2020-01-01", "%Y-%m-%d"))
|
|
N_days_ago = today - timedelta(days=10)
|
|
|
|
|
|
|
|
async def save_json(data, symbol, dir_path):
|
|
file_path = os.path.join(dir_path, f"{symbol}.json")
|
|
async with aiofiles.open(file_path, 'w') as file:
|
|
await file.write(ujson.dumps(data))
|
|
|
|
|
|
async def compute_rsi(price_history, time_period=14):
|
|
df_price = pd.DataFrame(price_history)
|
|
df_price['rsi'] = rsi(df_price['close'], window=time_period)
|
|
result = df_price.to_dict(orient='records')
|
|
return result
|
|
|
|
|
|
async def calculate_price_reactions(ticker, filtered_data, price_history):
|
|
# Ensure price_history is sorted by date
|
|
price_history.sort(key=lambda x: x['time'])
|
|
|
|
results = []
|
|
|
|
with open(f"json/implied-volatility/{ticker}.json",'r') as file:
|
|
iv_data = ujson.load(file)
|
|
|
|
for item in filtered_data:
|
|
report_date = item['date']
|
|
|
|
# Find the index of the report date in the price history
|
|
report_index = next((i for i, entry in enumerate(price_history) if entry['time'] == report_date), None)
|
|
|
|
if report_index is None:
|
|
continue # Skip if report date is not found in the price history
|
|
|
|
# Initialize a dictionary for price reactions
|
|
iv_value = next((entry['iv'] for entry in iv_data if entry['date'] == report_date), None)
|
|
|
|
#if iv_value is None:
|
|
# continue # Skip if no matching iv_data is found for the report_date
|
|
|
|
price_reactions = {
|
|
'date': report_date,
|
|
'quarter': item['quarter'],
|
|
'year': item['year'],
|
|
'time': item['time'],
|
|
'rsi': int(price_history[report_index]['rsi']),
|
|
'iv': iv_value,
|
|
}
|
|
|
|
|
|
|
|
for offset in [-4,-3,-2,-1,0,1,2,3,4,6]:
|
|
target_index = report_index + offset
|
|
|
|
# Ensure the target index is within bounds
|
|
if 0 <= target_index < len(price_history):
|
|
target_price_data = price_history[target_index]
|
|
previous_index = target_index - 1
|
|
|
|
|
|
|
|
# Ensure the previous index is within bounds
|
|
if 0 <= previous_index < len(price_history):
|
|
previous_price_data = price_history[previous_index]
|
|
|
|
# Calculate close price and percentage change
|
|
direction = "forward" if offset >= 0 else "backward"
|
|
days_key = f"{direction}_{abs(offset)}_days"
|
|
|
|
if offset != 1:
|
|
price_reactions[f"{days_key}_close"] = target_price_data['close']
|
|
price_reactions[f"{days_key}_change_percent"] = round(
|
|
(target_price_data['close'] / previous_price_data['close'] - 1) * 100, 2
|
|
)
|
|
|
|
if offset ==1:
|
|
price_reactions['open'] = target_price_data['open']
|
|
price_reactions['high'] = target_price_data['high']
|
|
price_reactions['low'] = target_price_data['low']
|
|
price_reactions['close'] = target_price_data['close']
|
|
|
|
price_reactions[f"open_change_percent"] = round((target_price_data['open'] / previous_price_data['close'] - 1) * 100, 2)
|
|
price_reactions[f"high_change_percent"] = round((target_price_data['high'] / previous_price_data['close'] - 1) * 100, 2)
|
|
price_reactions[f"low_change_percent"] = round((target_price_data['low'] / previous_price_data['close'] - 1) * 100, 2)
|
|
price_reactions[f"close_change_percent"] = round((target_price_data['close'] / previous_price_data['close'] - 1) * 100, 2)
|
|
|
|
|
|
results.append(price_reactions)
|
|
|
|
return results
|
|
|
|
async def get_past_data(data, ticker, con):
|
|
# Filter data based on date constraints
|
|
filtered_data = []
|
|
for item in data:
|
|
try:
|
|
item_date = ny_tz.localize(datetime.strptime(item["date"], "%Y-%m-%d"))
|
|
if min_date <= item_date <= today:
|
|
filtered_data.append(
|
|
{
|
|
'revenue': float(item['revenue']),
|
|
'revenueEst': float(item['revenue_est']),
|
|
'revenueSurprisePercent': round(float(item['revenue_surprise_percent'])*100, 2),
|
|
'eps': round(float(item['eps']), 2),
|
|
'epsEst': round(float(item['eps_est']), 2),
|
|
'epsSurprisePercent': round(float(item['eps_surprise_percent'])*100, 2),
|
|
'year': item['period_year'],
|
|
'quarter': item['period'],
|
|
'date': item['date'],
|
|
'time': item['time']
|
|
}
|
|
)
|
|
except:
|
|
pass
|
|
|
|
# Sort the filtered data by date
|
|
if len(filtered_data) > 0:
|
|
filtered_data.sort(key=lambda x: x['date'], reverse=True)
|
|
|
|
try:
|
|
# Load the price history data
|
|
with open(f"json/historical-price/max/{ticker}.json") as file:
|
|
price_history = orjson.loads(file.read())
|
|
|
|
price_history = await compute_rsi(price_history)
|
|
results = await calculate_price_reactions(ticker, filtered_data, price_history)
|
|
#print(results[0])
|
|
await save_json(results, ticker, 'json/earnings/past')
|
|
|
|
except:
|
|
pass
|
|
|
|
|
|
async def get_data(session, ticker, con):
|
|
querystring = {"token": api_key, "parameters[tickers]": ticker}
|
|
try:
|
|
async with session.get(url, params=querystring, headers=headers) as response:
|
|
data = ujson.loads(await response.text())['earnings']
|
|
|
|
await get_past_data(data, ticker, con)
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
#pass
|
|
|
|
async def run(stock_symbols, con):
|
|
async with aiohttp.ClientSession() as session:
|
|
tasks = [get_data(session, symbol, con) for symbol in stock_symbols]
|
|
for f in tqdm(asyncio.as_completed(tasks), total=len(stock_symbols)):
|
|
await f
|
|
|
|
try:
|
|
|
|
con = sqlite3.connect('stocks.db')
|
|
cursor = con.cursor()
|
|
cursor.execute("PRAGMA journal_mode = wal")
|
|
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
|
|
stock_symbols = [row[0] for row in cursor.fetchall()]
|
|
#stock_symbols = ['AMD']
|
|
|
|
asyncio.run(run(stock_symbols, con))
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
finally:
|
|
con.close() |