backend/app/cron_options_historical_volume.py
2025-01-21 23:19:36 +01:00

182 lines
7.4 KiB
Python

import requests
import orjson
import re
from datetime import datetime,timedelta
from dotenv import load_dotenv
import os
import sqlite3
import pandas as pd
import time
from tqdm import tqdm
from collections import defaultdict
def prepare_data(data, symbol):
res_list = []
#data = [entry for entry in data if datetime.strptime(entry['date'], "%Y-%m-%d") >= N_days_ago]
start_date_str = data[-1]['date']
end_date_str = data[0]['date']
query = query_template.format(ticker=symbol)
df_price = pd.read_sql_query(query, con if symbol in stocks_symbols else etf_con, params=(start_date_str, end_date_str)).round(2)
df_price = df_price.rename(columns={"change_percent": "changesPercentage"})
# Convert the DataFrame to a dictionary for quick lookups by date
df_change_dict = df_price.set_index('date')['changesPercentage'].to_dict()
df_close_dict = df_price.set_index('date')['close'].to_dict()
for item in data:
try:
# Round numerical and numerical-string values
new_item = {
key: safe_round(value) if isinstance(value, (int, float, str)) else value
for key, value in item.items()
}
# Add parsed fields
new_item['volume'] = round(new_item['call_volume'] + new_item['put_volume'], 2)
new_item['putCallRatio'] = round(new_item['put_volume']/new_item['call_volume'],2)
new_item['avgVolumeRatio'] = round(new_item['volume'] / (round(new_item['avg_30_day_call_volume'] + new_item['avg_30_day_put_volume'], 2)), 2)
new_item['total_premium'] = round(new_item['call_premium'] + new_item['put_premium'], 2)
new_item['net_premium'] = round(new_item['net_call_premium'] - new_item['net_put_premium'],2)
new_item['total_open_interest'] = round(new_item['call_open_interest'] + new_item['put_open_interest'], 2)
bearish_premium = float(item['bearish_premium'])
bullish_premium = float(item['bullish_premium'])
neutral_premium = calculate_neutral_premium(item)
new_item['premium_ratio'] = [
safe_round(bearish_premium),
neutral_premium,
safe_round(bullish_premium)
]
# Add changesPercentage if the date exists in df_change_dict
if item['date'] in df_change_dict:
new_item['changesPercentage'] = df_change_dict[item['date']]
if item['date'] in df_close_dict:
new_item['price'] = df_close_dict[item['date']]
res_list.append(new_item)
except:
pass
res_list = sorted(res_list, key=lambda x: x['date'])
for i in range(1, len(res_list)):
try:
current_open_interest = res_list[i]['total_open_interest']
previous_open_interest = res_list[i-1]['total_open_interest']
changes_percentage_oi = round((current_open_interest/previous_open_interest -1)*100,2)
res_list[i]['changesPercentageOI'] = changes_percentage_oi
except:
res_list[i]['changesPercentageOI'] = None
res_list = sorted(res_list, key=lambda x: x['date'],reverse=True)
if res_list:
save_json(res_list, symbol)
def get_contracts_from_directory(directory: str):
try:
# Ensure the directory exists
if not os.path.exists(directory):
raise FileNotFoundError(f"The directory '{directory}' does not exist.")
# Get all tickers from filenames
return [file.replace(".json", "") for file in os.listdir(directory) if file.endswith(".json")]
except Exception as e:
print(f"An error occurred: {e}")
return []
def get_contracts_from_directory(directory):
"""Retrieve a list of contract files from a directory."""
return [f.split('.')[0] for f in os.listdir(directory) if f.endswith('.json')]
def aggregate_data_by_date():
total_symbols = ['AA']
data_by_date = defaultdict(lambda: {
"date": "", # Add date field to the dictionary
"call_volume": 0,
"put_volume": 0,
"call_open_interest": 0,
"put_open_interest": 0,
"call_premium": 0,
"put_premium": 0,
})
for symbol in tqdm(total_symbols):
try:
contract_dir = f"json/all-options-contracts/{symbol}"
if not os.path.exists(contract_dir):
print(f"Directory does not exist: {contract_dir}")
continue
contract_list = get_contracts_from_directory(contract_dir)
for item in tqdm(contract_list, desc=f"Processing {symbol} contracts", leave=False):
try:
file_path = os.path.join(contract_dir, f"{item}.json")
with open(file_path, "r") as file:
data = orjson.loads(file.read())
option_type = data.get('optionType', None)
if option_type not in ['call', 'put']:
continue
for entry in data.get('history', []):
date = entry.get('date')
volume = entry.get('volume',0)
open_interest = entry.get('open_interest',0)
total_premium = entry.get('total_premium',0)
print(total_premium)
if volume is None:
volume = 0
if open_interest is None:
open_interest = 0
if total_premium is None:
total_premium = 0
if date:
data_by_date[date]["date"] = date # Store the date in the dictionary
if option_type == 'call':
if volume is not None:
data_by_date[date]["call_volume"] += int(volume)
if open_interest is not None:
data_by_date[date]["call_open_interest"] += int(open_interest)
if total_premium is not None:
data_by_date[date]["call_premium"] += int(total_premium)
elif option_type == 'put':
if volume is not None:
data_by_date[date]["put_volume"] += int(volume)
if open_interest is not None:
data_by_date[date]["put_open_interest"] += int(open_interest)
if total_premium is not None:
data_by_date[date]["put_premium"] += int(total_premium)
except Exception as e:
print(f"Error processing contract {item} for {symbol}: {e}")
continue
except Exception as e:
print(f"Error processing symbol {symbol}: {e}")
continue
# Convert to list of dictionaries and sort by date
result = list(data_by_date.values())
result.sort(key=lambda x: x['date'])
return result
if __name__ == '__main__':
# Run the aggregation
results = aggregate_data_by_date()
print(results[-1])