146 lines
5.0 KiB
Python
146 lines
5.0 KiB
Python
import sqlite3
|
|
from datetime import datetime, timedelta, date
|
|
import ujson
|
|
import os
|
|
import numpy as np
|
|
from dotenv import load_dotenv
|
|
from benzinga import financial_data
|
|
from collections import defaultdict
|
|
from tqdm import tqdm
|
|
|
|
load_dotenv()
|
|
api_key = os.getenv('BENZINGA_API_KEY')
|
|
|
|
fin = financial_data.Benzinga(api_key)
|
|
|
|
|
|
def save_json(symbol, data):
|
|
with open(f"json/options-net-flow/companies/{symbol}.json", 'w') as file:
|
|
ujson.dump(data, file)
|
|
|
|
def calculate_moving_average(data, window_size):
|
|
data = np.array(data, dtype=float)
|
|
cumsum = np.cumsum(data)
|
|
moving_avg = (cumsum[window_size - 1:] - np.concatenate(([0], cumsum[:-window_size]))) / window_size
|
|
return moving_avg.tolist()
|
|
|
|
def calculate_net_flow(data, window_size=100):
|
|
date_data = defaultdict(lambda: {'price': [], 'netCall': 0, 'netPut': 0})
|
|
|
|
for item in data:
|
|
date = item['date']
|
|
premium = float(item['cost_basis'])
|
|
#volume = int(item['volume'])
|
|
|
|
date_data[date]['price'].append(float(item['underlying_price']))
|
|
#date_data[date]['volume'] += volume
|
|
|
|
if item['put_call'] == 'CALL':
|
|
if item['execution_estimate'] == 'AT_ASK':
|
|
date_data[date]['netCall'] += premium
|
|
elif item['execution_estimate'] == 'AT_BID':
|
|
date_data[date]['netCall'] -= premium
|
|
elif item['put_call'] == 'PUT':
|
|
if item['execution_estimate'] == 'AT_ASK':
|
|
date_data[date]['netPut'] -= premium
|
|
elif item['execution_estimate'] == 'AT_BID':
|
|
date_data[date]['netPut'] += premium
|
|
|
|
# Calculate average underlying price and format the results
|
|
result = []
|
|
for date, values in date_data.items():
|
|
avg_price = sum(values['price']) / len(values['price'])
|
|
#volume = values['volume']
|
|
|
|
# Change sign of volume if netPut > netCall
|
|
#if values['netPut'] > values['netCall']:
|
|
# volume = -volume
|
|
|
|
result.append({
|
|
'date': date,
|
|
'price': round(avg_price, 2),
|
|
'netCall': int(values['netCall']),
|
|
'netPut': int(values['netPut']),
|
|
#'volume': int(volume)
|
|
})
|
|
sorted_data = sorted(result, key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d'))
|
|
|
|
|
|
# Calculate moving averages
|
|
netCall_values = [item['netCall'] for item in sorted_data]
|
|
netPut_values = [item['netPut'] for item in sorted_data]
|
|
|
|
netCall_ma = calculate_moving_average(netCall_values, window_size)
|
|
netPut_ma = calculate_moving_average(netPut_values, window_size)
|
|
|
|
# Add moving averages to the result and remove None values
|
|
filtered_data = []
|
|
|
|
# Add moving averages to the result
|
|
filtered_data = []
|
|
for i, item in enumerate(sorted_data):
|
|
if i >= window_size - 1:
|
|
item['netCall'] = int(netCall_ma[i - window_size + 1])
|
|
item['netPut'] = int(netPut_ma[i - window_size + 1])
|
|
filtered_data.append(item)
|
|
|
|
return filtered_data
|
|
|
|
|
|
|
|
def get_data(symbol):
|
|
try:
|
|
end_date = date.today()
|
|
start_date = end_date - timedelta(300)
|
|
|
|
end_date_str = end_date.strftime('%Y-%m-%d')
|
|
start_date_str = start_date.strftime('%Y-%m-%d')
|
|
|
|
res_list = []
|
|
for page in range(0, 100):
|
|
try:
|
|
data = fin.options_activity(company_tickers=symbol, page=page, pagesize=1000, date_from=start_date_str, date_to=end_date_str)
|
|
data = ujson.loads(fin.output(data))['option_activity']
|
|
res_list += data
|
|
except:
|
|
break
|
|
|
|
res_filtered = [{key: value for key, value in item.items() if key in ['ticker','date','execution_estimate', 'underlying_price', 'put_call', 'cost_basis', 'volume']} for item in res_list]
|
|
|
|
|
|
#Save raw data for each ticker for options page stack bar chart
|
|
ticker_filtered_data = [entry for entry in res_filtered if entry['ticker'] == symbol]
|
|
if len(ticker_filtered_data) > 100:
|
|
net_flow_data = calculate_net_flow(ticker_filtered_data, window_size=100)
|
|
if len(net_flow_data) > 0:
|
|
save_json(symbol, net_flow_data)
|
|
|
|
|
|
except ValueError as ve:
|
|
print(ve)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
try:
|
|
stock_con = sqlite3.connect('stocks.db')
|
|
stock_cursor = stock_con.cursor()
|
|
stock_cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE marketCap > 500E6 AND symbol NOT LIKE '%.%'")
|
|
stock_symbols = [row[0] for row in stock_cursor.fetchall()]
|
|
|
|
etf_con = sqlite3.connect('etf.db')
|
|
etf_cursor = etf_con.cursor()
|
|
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
|
|
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
|
|
|
|
stock_con.close()
|
|
etf_con.close()
|
|
|
|
total_symbols = stock_symbols #+ etf_symbols
|
|
|
|
for symbol in tqdm(total_symbols):
|
|
get_data(symbol)
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
|