backend/app/cron_market_flow.py
2025-01-27 13:41:50 +01:00

358 lines
13 KiB
Python

import os
import pandas as pd
import orjson
from dotenv import load_dotenv
import sqlite3
from datetime import datetime, timedelta
from GetStartEndDate import GetStartEndDate
import asyncio
import aiohttp
import pytz
import requests # Add missing import
from collections import defaultdict
import intrinio_sdk as intrinio
from intrinio_sdk.rest import ApiException
from GetStartEndDate import GetStartEndDate
from tqdm import tqdm
import re
load_dotenv()
fmp_api_key = os.getenv('FMP_API_KEY')
api_key = os.getenv('INTRINIO_API_KEY')
intrinio.ApiClient().set_api_key(api_key)
intrinio.ApiClient().allow_retries(True)
ny_tz = pytz.timezone('America/New_York')
today,_ = GetStartEndDate().run()
today = today.strftime("%Y-%m-%d")
def save_json(data):
directory = "json/market-flow"
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
with open(f"{directory}/data.json", 'wb') as file: # Use binary mode for orjson
file.write(orjson.dumps(data))
# Function to convert and match timestamps
def add_close_to_data(price_list, data):
for entry in data:
formatted_time = entry['timestamp']
# Match with price_list
for price in price_list:
if price['date'] == formatted_time:
entry['close'] = price['close']
break # Match found, no need to continue searching
return data
def parse_contract_data(option_symbol):
# Define regex pattern to match the symbol structure
match = re.match(r"([A-Z]+)(\d{6})([CP])(\d+)", option_symbol)
if not match:
raise ValueError(f"Invalid option_symbol format: {option_symbol}")
ticker, expiration, option_type, strike_price = match.groups()
return option_type
async def get_intrinio_data(ticker):
url=f"https://api-v2.intrinio.com/options/unusual_activity/{ticker}/intraday?page_size=1000&api_key={api_key}"
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
data = await response.json()
data = data.get('trades',[])
if data:
res_list = []
for item in data:
try:
iso_timestamp = item['timestamp'].replace('Z', '+00:00')
# Parse timestamp and convert to New York time
timestamp = datetime.fromisoformat(iso_timestamp).astimezone(ny_tz)
formatted_time = timestamp.strftime('%Y-%m-%d %H:%M:%S')
put_call = parse_contract_data(item['contract'].replace("___","").replace("__","").replace("_",''))
if put_call == 'C':
put_call = 'calls'
else:
put_call = 'puts'
res_list.append({'timestamp': formatted_time, 'put_call': put_call, 'cost_basis': item['total_value'], 'volume': item['total_size'], 'sentiment': item['sentiment']})
except:
pass
res_list.sort(key=lambda x: x['timestamp'])
return res_list
else:
return []
async def get_stock_chart_data(ticker):
start_date_1d, end_date_1d = GetStartEndDate().run()
start_date = start_date_1d.strftime("%Y-%m-%d")
end_date = end_date_1d.strftime("%Y-%m-%d")
url = f"https://financialmodelingprep.com/api/v3/historical-chart/1min/{ticker}?from={start_date}&to={end_date}&apikey={fmp_api_key}"
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
if response.status == 200:
data = await response.json()
data = sorted(data, key=lambda x: x['date'])
return data
else:
return []
def get_market_tide(interval_5m=False):
with open(f"json/stocks-list/sp500_constituent.json","r") as file:
ticker_list = orjson.loads(file.read())
ticker_list = [item['symbol'] for item in ticker_list][:10]
res_list = []
# Track changes per interval
delta_data = defaultdict(lambda: {
'cumulative_net_call_premium': 0,
'cumulative_net_put_premium': 0,
'call_ask_vol': 0,
'call_bid_vol': 0,
'put_ask_vol': 0,
'put_bid_vol': 0
})
for ticker in tqdm(['SPY']):
'''
with open("json/options-flow/feed/data.json", "r") as file:
data = orjson.loads(file.read())
'''
data = asyncio.run(get_intrinio_data(ticker))
ticker_options = [item for item in data if item['timestamp'].startswith(today)]
ticker_options.sort(key=lambda x: x['timestamp'])
for item in ticker_options:
try:
# Parse and standardize timestamp
dt = datetime.strptime(f"{item['timestamp']}", "%Y-%m-%d %H:%M:%S")
# Truncate to start of minute (for 1m summaries)
dt = dt.replace(second=0, microsecond=0)
# Adjust for 5-minute intervals if needed
if interval_5m:
dt -= timedelta(minutes=dt.minute % 5)
rounded_ts = dt.strftime("%Y-%m-%d %H:%M:%S")
# Extract metrics
cost = float(item.get("cost_basis", 0))
sentiment = item.get("sentiment", "").lower()
put_call = item.get("put_call", "").lower()
vol = int(item.get("volume", 1))
# Update premium metrics
if put_call == "calls":
if sentiment == "bullish":
delta_data[rounded_ts]['cumulative_net_call_premium'] += cost
delta_data[rounded_ts]['call_ask_vol'] += vol
elif sentiment == "bearish":
delta_data[rounded_ts]['cumulative_net_call_premium'] -= cost
delta_data[rounded_ts]['call_bid_vol'] += vol
elif put_call == "puts":
if sentiment == "bullish":
delta_data[rounded_ts]['cumulative_net_put_premium'] -= cost
delta_data[rounded_ts]['put_ask_vol'] += vol
elif sentiment == "bearish":
delta_data[rounded_ts]['cumulative_net_put_premium'] += cost
delta_data[rounded_ts]['put_bid_vol'] += vol
except Exception as e:
print(f"Error processing item: {e}")
# Calculate cumulative values over time
sorted_ts = sorted(delta_data.keys())
cumulative = {
'net_call_premium': 0,
'net_put_premium': 0,
'call_ask': 0,
'call_bid': 0,
'put_ask': 0,
'put_bid': 0
}
for ts in sorted_ts:
# Update cumulative values
cumulative['net_call_premium'] += delta_data[ts]['cumulative_net_call_premium']
cumulative['net_put_premium'] += delta_data[ts]['cumulative_net_put_premium']
cumulative['call_ask'] += delta_data[ts]['call_ask_vol']
cumulative['call_bid'] += delta_data[ts]['call_bid_vol']
cumulative['put_ask'] += delta_data[ts]['put_ask_vol']
cumulative['put_bid'] += delta_data[ts]['put_bid_vol']
# Calculate derived metrics
call_volume = cumulative['call_ask'] + cumulative['call_bid']
put_volume = cumulative['put_ask'] + cumulative['put_bid']
net_volume = (cumulative['call_ask'] - cumulative['call_bid']) - \
(cumulative['put_ask'] - cumulative['put_bid'])
res_list.append({
'timestamp': ts,
'ticker': ticker,
'net_call_premium': cumulative['net_call_premium'],
'net_put_premium': cumulative['net_put_premium'],
'call_volume': call_volume,
'put_volume': put_volume,
'net_volume': net_volume
})
res_list.sort(key=lambda x: x['timestamp'])
price_list = asyncio.run(get_stock_chart_data('SPY'))
if len(price_list) == 0:
with open(f"json/one-day-price/'SPY'.json") as file:
price_list = orjson.loads(file.read())
data = add_close_to_data(price_list, res_list)
return res_list
def get_top_sector_tickers():
keep_elements = ['price', 'ticker', 'name', 'changesPercentage','netPremium','netCallPremium','netPutPremium','gexRatio','gexNetChange','ivRank']
sector_list = [
"Basic Materials",
"Communication Services",
"Consumer Cyclical",
"Consumer Defensive",
"Energy",
"Financial Services",
"Healthcare",
"Industrials",
"Real Estate",
"Technology",
"Utilities",
]
headers = {
"Accept": "application/json, text/plain",
"Authorization": api_key
}
url = "https://api.unusualwhales.com/api/screener/stocks"
res_list = {}
for sector in sector_list:
querystring = {
'order': 'net_premium',
'order_direction': 'desc',
'sectors[]': sector
}
response = requests.get(url, headers=headers, params=querystring)
data = response.json().get('data', [])
updated_data = []
for item in data[:10]:
try:
new_item = {key: safe_round(value) for key, value in item.items()}
with open(f"json/quote/{item['ticker']}.json") as file:
quote_data = orjson.loads(file.read())
new_item['name'] = quote_data['name']
new_item['price'] = round(float(quote_data['price']), 2)
new_item['changesPercentage'] = round(float(quote_data['changesPercentage']), 2)
new_item['ivRank'] = round(float(new_item['iv_rank']),2)
new_item['gexRatio'] = new_item['gex_ratio']
new_item['gexNetChange'] = new_item['gex_net_change']
new_item['netCallPremium'] = new_item['net_call_premium']
new_item['netPutPremium'] = new_item['net_put_premium']
new_item['netPremium'] = abs(new_item['netCallPremium'] - new_item['netPutPremium'])
# Filter new_item to keep only specified elements
filtered_item = {key: new_item[key] for key in keep_elements if key in new_item}
updated_data.append(filtered_item)
except Exception as e:
print(f"Error processing ticker {item.get('ticker', 'unknown')}: {e}")
# Add rank to each item
for rank, item in enumerate(updated_data, 1):
item['rank'] = rank
res_list[sector] = updated_data
return res_list
def get_top_spy_tickers():
keep_elements = ['price', 'ticker', 'name', 'changesPercentage','netPremium','netCallPremium','netPutPremium','gexRatio','gexNetChange','ivRank']
headers = {
"Accept": "application/json, text/plain",
"Authorization": api_key
}
url = "https://api.unusualwhales.com/api/screener/stocks"
querystring = {"is_s_p_500":"true"}
response = requests.get(url, headers=headers, params=querystring)
data = response.json().get('data', [])
updated_data = []
for item in data[:10]:
try:
new_item = {key: safe_round(value) for key, value in item.items()}
with open(f"json/quote/{item['ticker']}.json") as file:
quote_data = orjson.loads(file.read())
new_item['name'] = quote_data['name']
new_item['price'] = round(float(quote_data['price']), 2)
new_item['changesPercentage'] = round(float(quote_data['changesPercentage']), 2)
new_item['ivRank'] = round(float(new_item['iv_rank']),2)
new_item['gexRatio'] = new_item['gex_ratio']
new_item['gexNetChange'] = new_item['gex_net_change']
new_item['netCallPremium'] = new_item['net_call_premium']
new_item['netPutPremium'] = new_item['net_put_premium']
new_item['netPremium'] = abs(new_item['netCallPremium'] - new_item['netPutPremium'])
# Filter new_item to keep only specified elements
filtered_item = {key: new_item[key] for key in keep_elements if key in new_item}
updated_data.append(filtered_item)
except Exception as e:
print(f"Error processing ticker {item.get('ticker', 'unknown')}: {e}")
# Add rank to each item
for rank, item in enumerate(updated_data, 1):
item['rank'] = rank
return updated_data
def main():
market_tide = get_market_tide()
data = {'marketTide': market_tide}
'''
sector_data = get_sector_data()
top_sector_tickers = get_top_sector_tickers()
top_spy_tickers = get_top_spy_tickers()
top_sector_tickers['SPY'] = top_spy_tickers
data = {'sectorData': sector_data, 'topSectorTickers': top_sector_tickers, 'marketTide': market_tide}
'''
if len(data) > 0:
save_json(data)
if __name__ == '__main__':
main()