175 lines
6.1 KiB
Python
175 lines
6.1 KiB
Python
import requests
|
|
import orjson
|
|
import re
|
|
from datetime import datetime,timedelta
|
|
from dotenv import load_dotenv
|
|
import os
|
|
import sqlite3
|
|
import pandas as pd
|
|
import time
|
|
from tqdm import tqdm
|
|
|
|
load_dotenv()
|
|
|
|
api_key = os.getenv('UNUSUAL_WHALES_API_KEY')
|
|
|
|
# Connect to the databases
|
|
con = sqlite3.connect('stocks.db')
|
|
etf_con = sqlite3.connect('etf.db')
|
|
cursor = con.cursor()
|
|
cursor.execute("PRAGMA journal_mode = wal")
|
|
#cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%' AND marketCap > 1E9")
|
|
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
|
|
stocks_symbols = [row[0] for row in cursor.fetchall()]
|
|
|
|
etf_cursor = etf_con.cursor()
|
|
etf_cursor.execute("PRAGMA journal_mode = wal")
|
|
#etf_cursor.execute("SELECT DISTINCT symbol FROM etfs WHERE marketCap > 1E9")
|
|
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
|
|
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
|
|
|
|
|
|
|
|
total_symbols = stocks_symbols + etf_symbols
|
|
|
|
#today = datetime.today()
|
|
#N_days_ago = today - timedelta(days=90)
|
|
|
|
query_template = """
|
|
SELECT date, close, change_percent
|
|
FROM "{ticker}"
|
|
WHERE date BETWEEN ? AND ?
|
|
"""
|
|
|
|
print(len(total_symbols))
|
|
|
|
def save_json(data, symbol):
|
|
directory="json/options-historical-data/companies"
|
|
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
|
|
with open(f"{directory}/{symbol}.json", 'wb') as file: # Use binary mode for orjson
|
|
file.write(orjson.dumps(data))
|
|
|
|
|
|
def safe_round(value, decimals=2):
|
|
try:
|
|
return round(float(value), decimals)
|
|
except (ValueError, TypeError):
|
|
return value
|
|
|
|
|
|
def calculate_neutral_premium(data_item):
|
|
"""Calculate the neutral premium for a data item."""
|
|
call_premium = float(data_item['call_premium'])
|
|
put_premium = float(data_item['put_premium'])
|
|
bearish_premium = float(data_item['bearish_premium'])
|
|
bullish_premium = float(data_item['bullish_premium'])
|
|
|
|
total_premiums = bearish_premium + bullish_premium
|
|
observed_premiums = call_premium + put_premium
|
|
neutral_premium = observed_premiums - total_premiums
|
|
|
|
return safe_round(neutral_premium)
|
|
|
|
|
|
def prepare_data(data, symbol):
|
|
res_list = []
|
|
#data = [entry for entry in data if datetime.strptime(entry['date'], "%Y-%m-%d") >= N_days_ago]
|
|
|
|
start_date_str = data[-1]['date']
|
|
end_date_str = data[0]['date']
|
|
|
|
query = query_template.format(ticker=symbol)
|
|
df_price = pd.read_sql_query(query, con if symbol in stocks_symbols else etf_con, params=(start_date_str, end_date_str)).round(2)
|
|
df_price = df_price.rename(columns={"change_percent": "changesPercentage"})
|
|
|
|
# Convert the DataFrame to a dictionary for quick lookups by date
|
|
df_change_dict = df_price.set_index('date')['changesPercentage'].to_dict()
|
|
df_close_dict = df_price.set_index('date')['close'].to_dict()
|
|
|
|
for item in data:
|
|
try:
|
|
# Round numerical and numerical-string values
|
|
new_item = {
|
|
key: safe_round(value) if isinstance(value, (int, float, str)) else value
|
|
for key, value in item.items()
|
|
}
|
|
|
|
# Add parsed fields
|
|
new_item['volume'] = round(new_item['call_volume'] + new_item['put_volume'], 2)
|
|
new_item['putCallRatio'] = round(new_item['put_volume']/new_item['call_volume'],2)
|
|
new_item['avgVolumeRatio'] = round(new_item['volume'] / (round(new_item['avg_30_day_call_volume'] + new_item['avg_30_day_put_volume'], 2)), 2)
|
|
new_item['total_premium'] = round(new_item['call_premium'] + new_item['put_premium'], 2)
|
|
new_item['net_premium'] = round(new_item['net_call_premium'] - new_item['net_put_premium'],2)
|
|
new_item['total_open_interest'] = round(new_item['call_open_interest'] + new_item['put_open_interest'], 2)
|
|
|
|
bearish_premium = float(item['bearish_premium'])
|
|
bullish_premium = float(item['bullish_premium'])
|
|
neutral_premium = calculate_neutral_premium(item)
|
|
|
|
new_item['premium_ratio'] = [
|
|
safe_round(bearish_premium),
|
|
neutral_premium,
|
|
safe_round(bullish_premium)
|
|
]
|
|
|
|
|
|
# Add changesPercentage if the date exists in df_change_dict
|
|
if item['date'] in df_change_dict:
|
|
new_item['changesPercentage'] = df_change_dict[item['date']]
|
|
if item['date'] in df_close_dict:
|
|
new_item['price'] = df_close_dict[item['date']]
|
|
|
|
res_list.append(new_item)
|
|
except:
|
|
pass
|
|
|
|
res_list = sorted(res_list, key=lambda x: x['date'])
|
|
for i in range(1, len(res_list)):
|
|
try:
|
|
current_open_interest = res_list[i]['total_open_interest']
|
|
previous_open_interest = res_list[i-1]['total_open_interest']
|
|
changes_percentage_oi = round((current_open_interest/previous_open_interest -1)*100,2)
|
|
res_list[i]['changesPercentageOI'] = changes_percentage_oi
|
|
except:
|
|
res_list[i]['changesPercentageOI'] = None
|
|
|
|
res_list = sorted(res_list, key=lambda x: x['date'],reverse=True)
|
|
|
|
if res_list:
|
|
save_json(res_list, symbol)
|
|
|
|
|
|
|
|
querystring = {"limit":"300"}
|
|
headers = {
|
|
"Accept": "application/json, text/plain",
|
|
"Authorization": api_key
|
|
}
|
|
|
|
#total_symbols = ['NVDA']
|
|
|
|
counter = 0
|
|
for symbol in tqdm(total_symbols):
|
|
try:
|
|
|
|
url = f"https://api.unusualwhales.com/api/stock/{symbol}/options-volume"
|
|
|
|
response = requests.get(url, headers=headers, params=querystring)
|
|
|
|
if response.status_code == 200:
|
|
data = response.json()['data']
|
|
prepare_data(data, symbol)
|
|
|
|
counter +=1
|
|
# If 50 chunks have been processed, sleep for 60 seconds
|
|
if counter == 260:
|
|
print("Sleeping...")
|
|
time.sleep(60) # Sleep for 60 seconds
|
|
counter = 0
|
|
|
|
except Exception as e:
|
|
print(f"Error for {symbol}:{e}")
|
|
|
|
|
|
con.close()
|
|
etf_con.close() |