backend/app/cron_export_price.py
MuslemRahimi 3cdb2e3ebe update
2024-10-23 20:15:58 +02:00

144 lines
5.6 KiB
Python

from datetime import datetime, timedelta
import ujson
import sqlite3
import asyncio
import aiohttp
from tqdm import tqdm
import os
from dotenv import load_dotenv
from aiohttp import TCPConnector
import gc
load_dotenv()
api_key = os.getenv('FMP_API_KEY')
# Rate limiting
MAX_REQUESTS_PER_MINUTE = 500
request_semaphore = asyncio.Semaphore(MAX_REQUESTS_PER_MINUTE)
async def fetch_data(session, url):
async with request_semaphore:
try:
async with session.get(url) as response:
if response.status == 200:
return await response.json()
else:
print(f"Error status {response.status} for URL: {url}")
return []
except Exception as e:
print(f"Error fetching data from {url}: {e}")
return []
def get_existing_data(symbol, interval):
file_path = f"json/export/price/{interval}/{symbol}.json"
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return ujson.load(file)
return []
async def get_data(session, symbol, time_period):
existing_data = get_existing_data(symbol, time_period)
if not existing_data:
# If no existing data, fetch all data
return await fetch_all_data(session, symbol, time_period)
last_date = datetime.strptime(existing_data[-1]['date'], "%Y-%m-%d %H:%M:%S")
current_date = datetime.utcnow()
# If data is up to date, skip fetching
if (current_date - last_date).days < 1:
return # Data is recent, skip further fetch
# Fetch missing data only from the last saved date to the current date
start_date = (last_date + timedelta(days=1)).strftime("%Y-%m-%d")
end_date = current_date.strftime("%Y-%m-%d")
print(start_date, end_date)
url = f"https://financialmodelingprep.com/api/v3/historical-chart/{time_period}/{symbol}?serietype=bar&extend=false&from={start_date}&to={end_date}&apikey={api_key}"
new_data = await fetch_data(session, url)
if new_data:
existing_data.extend(new_data)
existing_data.sort(key=lambda x: x['date']) # Sort by date
await save_json(symbol, existing_data, time_period)
async def fetch_all_data(session, symbol, time_period):
end_date = datetime.utcnow()
start_date = end_date - timedelta(days=180)
step = timedelta(days=5) # Step of 5 days
current_start_date = start_date
all_data = [] # To accumulate all the data
while current_start_date < end_date:
current_end_date = min(current_start_date + step, end_date)
url = f"https://financialmodelingprep.com/api/v3/historical-chart/{time_period}/{symbol}?serietype=bar&extend=false&from={current_start_date.strftime('%Y-%m-%d')}&to={current_end_date.strftime('%Y-%m-%d')}&apikey={api_key}"
data = await fetch_data(session, url)
print("api endpoint called")
if data:
all_data.extend(data) # Accumulate the fetched data
print(f"Fetched {len(data)} records from {current_start_date.strftime('%Y-%m-%d')} to {current_end_date.strftime('%Y-%m-%d')}")
# Move the window forward by 5 days
current_start_date = current_end_date
if all_data:
# Sort the data by date before saving
all_data.sort(key=lambda x: x['date'])
await save_json(symbol, all_data, time_period)
gc.collect()
async def save_json(symbol, data, interval):
os.makedirs(f"json/export/price/{interval}", exist_ok=True)
file_path = f"json/export/price/{interval}/{symbol}.json"
with open(file_path, 'w') as file:
ujson.dump(data, file)
async def process_symbol(session, symbol):
await get_data(session, symbol, '1hour')
await get_data(session, symbol, '30min')
async def run():
# Load symbols from databases
con = sqlite3.connect('stocks.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
stock_symbols = [row[0] for row in cursor.fetchall()]
etf_con = sqlite3.connect('etf.db')
etf_cursor = etf_con.cursor()
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
con.close()
etf_con.close()
# List of total symbols to process
total_symbols = stock_symbols # Use stock_symbols + etf_symbols if needed
chunk_size = len(total_symbols) // 500 # Divide the list into N chunks
chunks = [total_symbols[i:i + chunk_size] for i in range(0, len(total_symbols), chunk_size)]
for chunk in tqdm(chunks):
print(len(chunk))
connector = TCPConnector(limit=MAX_REQUESTS_PER_MINUTE)
async with aiohttp.ClientSession(connector=connector) as session:
tasks = [process_symbol(session, symbol) for symbol in chunk]
# Use tqdm to track progress of tasks
for i, task in enumerate(tqdm(asyncio.as_completed(tasks), total=len(tasks)), 1):
await task # Ensure all tasks are awaited properly
if i % MAX_REQUESTS_PER_MINUTE == 0:
print(f'Processed {i} symbols, sleeping to respect rate limits...')
gc.collect()
await asyncio.sleep(30) # Pause for 60 seconds to avoid hitting rate limits
gc.collect()
await asyncio.sleep(30)
if __name__ == "__main__":
asyncio.run(run())