backend/app/cron_options_net_flow.py
2024-07-03 20:51:21 +02:00

148 lines
5.0 KiB
Python

import sqlite3
from datetime import datetime, timedelta, date
import ujson
import os
import numpy as np
from dotenv import load_dotenv
from benzinga import financial_data
from collections import defaultdict
from tqdm import tqdm
load_dotenv()
api_key = os.getenv('BENZINGA_API_KEY')
fin = financial_data.Benzinga(api_key)
def save_json(symbol, data):
with open(f"json/options-net-flow/companies/{symbol}.json", 'w') as file:
ujson.dump(data, file)
def calculate_moving_average(data, window_size):
data = np.array(data, dtype=float)
cumsum = np.cumsum(data)
moving_avg = (cumsum[window_size - 1:] - np.concatenate(([0], cumsum[:-window_size]))) / window_size
return moving_avg.tolist()
def calculate_net_flow(data, window_size=20):
date_data = defaultdict(lambda: {'price': [], 'netCall': 0, 'netPut': 0})
for item in data:
date = item['date']
try:
premium = float(item['cost_basis'])
date_data[date]['price'].append(float(item['underlying_price']))
#date_data[date]['volume'] += volume
if item['put_call'] == 'CALL':
if item['execution_estimate'] == 'AT_ASK':
date_data[date]['netCall'] += premium
elif item['execution_estimate'] == 'AT_BID':
date_data[date]['netCall'] -= premium
elif item['put_call'] == 'PUT':
if item['execution_estimate'] == 'AT_ASK':
date_data[date]['netPut'] -= premium
elif item['execution_estimate'] == 'AT_BID':
date_data[date]['netPut'] += premium
except:
pass
#volume = int(item['volume'])
# Calculate average underlying price and format the results
result = []
for date, values in date_data.items():
avg_price = sum(values['price']) / len(values['price'])
#volume = values['volume']
# Change sign of volume if netPut > netCall
#if values['netPut'] > values['netCall']:
# volume = -volume
result.append({
'date': date,
'price': round(avg_price, 2),
'netCall': int(values['netCall']),
'netPut': int(values['netPut']),
#'volume': int(volume)
})
sorted_data = sorted(result, key=lambda x: datetime.strptime(x['date'], '%Y-%m-%d'))
# Calculate moving averages
netCall_values = [item['netCall'] for item in sorted_data]
netPut_values = [item['netPut'] for item in sorted_data]
netCall_ma = calculate_moving_average(netCall_values, window_size)
netPut_ma = calculate_moving_average(netPut_values, window_size)
# Add moving averages to the result and remove None values
filtered_data = []
# Add moving averages to the result
filtered_data = []
for i, item in enumerate(sorted_data):
if i >= window_size - 1:
item['netCall'] = int(netCall_ma[i - window_size + 1])
item['netPut'] = int(netPut_ma[i - window_size + 1])
filtered_data.append(item)
return filtered_data
def get_data(symbol):
try:
end_date = date.today()
start_date = end_date - timedelta(200)
end_date_str = end_date.strftime('%Y-%m-%d')
start_date_str = start_date.strftime('%Y-%m-%d')
res_list = []
for page in range(0, 100):
try:
data = fin.options_activity(company_tickers=symbol, page=page, pagesize=1000, date_from=start_date_str, date_to=end_date_str)
data = ujson.loads(fin.output(data))['option_activity']
res_list += data
except:
break
res_filtered = [{key: value for key, value in item.items() if key in ['ticker','date','execution_estimate', 'underlying_price', 'put_call', 'cost_basis']} for item in res_list]
#Save raw data for each ticker for options page stack bar chart
ticker_filtered_data = [entry for entry in res_filtered if entry['ticker'] == symbol]
if len(ticker_filtered_data) > 100:
net_flow_data = calculate_net_flow(ticker_filtered_data)
if len(net_flow_data) > 0:
save_json(symbol, net_flow_data)
except ValueError as ve:
print(ve)
except Exception as e:
print(e)
try:
stock_con = sqlite3.connect('stocks.db')
stock_cursor = stock_con.cursor()
stock_cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
stock_symbols = [row[0] for row in stock_cursor.fetchall()]
etf_con = sqlite3.connect('etf.db')
etf_cursor = etf_con.cursor()
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
stock_con.close()
etf_con.close()
total_symbols = stock_symbols + etf_symbols
for symbol in tqdm(total_symbols):
get_data(symbol)
except Exception as e:
print(e)