211 lines
7.7 KiB
Python
211 lines
7.7 KiB
Python
import os
|
|
import pandas as pd
|
|
import orjson
|
|
from dotenv import load_dotenv
|
|
import sqlite3
|
|
from datetime import datetime, timedelta
|
|
import pytz
|
|
import requests # Add missing import
|
|
|
|
|
|
load_dotenv()
|
|
api_key = os.getenv('UNUSUAL_WHALES_API_KEY')
|
|
headers = {
|
|
"Accept": "application/json, text/plain",
|
|
"Authorization": api_key
|
|
}
|
|
|
|
|
|
|
|
def save_json(data):
|
|
directory = "json/sector-flow"
|
|
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
|
|
with open(f"{directory}/data.json", 'wb') as file: # Use binary mode for orjson
|
|
file.write(orjson.dumps(data))
|
|
|
|
def convert_tape_time(data_list):
|
|
# Iterate through the list and update the 'tape_time' field for each dictionary
|
|
for item in data_list:
|
|
utc_time = datetime.strptime(item['tape_time'], "%Y-%m-%dT%H:%M:%SZ").replace(tzinfo=pytz.UTC)
|
|
new_york_tz = pytz.timezone("America/New_York")
|
|
ny_time = utc_time.astimezone(new_york_tz)
|
|
item['tape_time'] = ny_time.strftime("%Y-%m-%d %H:%M:%S")
|
|
return data_list
|
|
|
|
|
|
def safe_round(value):
|
|
"""Attempt to convert a value to float and round it. Return the original value if not possible."""
|
|
try:
|
|
return round(float(value), 2)
|
|
except (ValueError, TypeError):
|
|
return value
|
|
|
|
def calculate_neutral_premium(data_item):
|
|
"""Calculate the neutral premium for a data item."""
|
|
call_premium = float(data_item['call_premium'])
|
|
put_premium = float(data_item['put_premium'])
|
|
bearish_premium = float(data_item['bearish_premium'])
|
|
bullish_premium = float(data_item['bullish_premium'])
|
|
|
|
total_premiums = bearish_premium + bullish_premium
|
|
observed_premiums = call_premium + put_premium
|
|
neutral_premium = observed_premiums - total_premiums
|
|
|
|
return safe_round(neutral_premium)
|
|
|
|
def generate_time_intervals(start_time, end_time):
|
|
"""Generate 1-minute intervals from start_time to end_time."""
|
|
intervals = []
|
|
current_time = start_time
|
|
while current_time <= end_time:
|
|
intervals.append(current_time.strftime('%Y-%m-%d %H:%M:%S'))
|
|
current_time += timedelta(minutes=1)
|
|
return intervals
|
|
|
|
def get_sector_data():
|
|
try:
|
|
url = "https://api.unusualwhales.com/api/market/sector-etfs"
|
|
response = requests.get(url, headers=headers)
|
|
data = response.json().get('data', [])
|
|
res_list = []
|
|
processed_data = []
|
|
|
|
|
|
for item in data:
|
|
symbol = item['ticker']
|
|
|
|
bearish_premium = float(item['bearish_premium'])
|
|
bullish_premium = float(item['bullish_premium'])
|
|
neutral_premium = calculate_neutral_premium(item)
|
|
|
|
# Step 1: Replace 'full_name' with 'name' if needed
|
|
new_item = {
|
|
'name' if key == 'full_name' else key: safe_round(value)
|
|
for key, value in item.items()
|
|
if key != 'in_out_flow'
|
|
}
|
|
|
|
# Step 2: Replace 'name' values
|
|
if str(new_item.get('name')) == 'Consumer Staples':
|
|
new_item['name'] = 'Consumer Defensive'
|
|
elif str(new_item.get('name')) == 'Consumer Discretionary':
|
|
new_item['name'] = 'Consumer Cyclical'
|
|
elif str(new_item.get('name')) == 'Health Care':
|
|
new_item['name'] = 'Healthcare'
|
|
elif str(new_item.get('name')) == 'Financials':
|
|
new_item['name'] = 'Financial Services'
|
|
elif str(new_item.get('name')) == 'Materials':
|
|
new_item['name'] = 'Basic Materials'
|
|
|
|
new_item['premium_ratio'] = [
|
|
safe_round(bearish_premium),
|
|
neutral_premium,
|
|
safe_round(bullish_premium)
|
|
]
|
|
|
|
with open(f"json/quote/{symbol}.json") as file:
|
|
quote_data = orjson.loads(file.read())
|
|
new_item['price'] = round(quote_data.get('price', 0), 2)
|
|
new_item['changesPercentage'] = round(quote_data.get('changesPercentage', 0), 2)
|
|
|
|
#get prem tick data:
|
|
if symbol != 'SPY':
|
|
prem_tick_history = get_net_prem_ticks(symbol)
|
|
#if symbol == 'XLB':
|
|
# print(prem_tick_history[10])
|
|
|
|
new_item['premTickHistory'] = prem_tick_history
|
|
processed_data.append(new_item)
|
|
|
|
return processed_data
|
|
except Exception as e:
|
|
print(e)
|
|
return []
|
|
|
|
def get_net_prem_ticks(symbol):
|
|
# Fetch data from the API
|
|
url = f"https://api.unusualwhales.com/api/stock/{symbol}/net-prem-ticks"
|
|
response = requests.get(url, headers=headers)
|
|
data = response.json().get('data', [])
|
|
print(data[0])
|
|
# Sort data by date in descending order
|
|
data = sorted(data, key=lambda x: datetime.fromisoformat(x['date'].replace('Z', '+00:00')), reverse=True)
|
|
|
|
# Convert tape_time if necessary
|
|
data = convert_tape_time(data)
|
|
|
|
# Load price list
|
|
with open(f"json/one-day-price/{symbol}.json") as file:
|
|
price_list = orjson.loads(file.read())
|
|
|
|
# Get the start time from the earliest tape_time in data
|
|
if not data:
|
|
return []
|
|
|
|
start_time = datetime.strptime(data[0]['tape_time'], '%Y-%m-%d %H:%M:%S')
|
|
end_time = datetime.combine(start_time.date(), datetime.strptime('22:00:00', '%H:%M:%S').time())
|
|
|
|
# Generate 1-minute intervals
|
|
intervals = generate_time_intervals(start_time, end_time)
|
|
|
|
# Create a dictionary for fast lookups of existing tape_time
|
|
data_dict = {entry['tape_time']: entry for entry in data}
|
|
|
|
# Initialize aggregated data with cumulative sums
|
|
aggregated_data = {time: {
|
|
'net_call_premium': 0,
|
|
'net_put_premium': 0,
|
|
'net_call_volume': 0,
|
|
'net_put_volume': 0,
|
|
'tape_time': time,
|
|
'close': None
|
|
} for time in intervals}
|
|
|
|
# Variable to track cumulative sums
|
|
cumulative_net_call_premium = 0
|
|
cumulative_net_put_premium = 0
|
|
cumulative_net_call_volume = 0
|
|
cumulative_net_put_volume = 0
|
|
|
|
# Aggregate data for each minute, cumulatively adding values
|
|
for time in intervals:
|
|
if time in data_dict:
|
|
entry = data_dict[time]
|
|
# Add current values to cumulative sums
|
|
cumulative_net_call_premium += float(entry.get('net_call_premium', 0))
|
|
cumulative_net_put_premium += float(entry.get('net_put_premium', 0))
|
|
cumulative_net_call_volume += float(entry.get('net_call_volume', 0))
|
|
cumulative_net_put_volume += float(entry.get('net_put_volume', 0))
|
|
|
|
# Set the aggregated values for this minute
|
|
aggregated_data[time]['net_call_premium'] = cumulative_net_call_premium
|
|
aggregated_data[time]['net_put_premium'] = cumulative_net_put_premium
|
|
aggregated_data[time]['net_call_volume'] = cumulative_net_call_volume
|
|
aggregated_data[time]['net_put_volume'] = cumulative_net_put_volume
|
|
|
|
# Populate data with aggregated results
|
|
populated_data = list(aggregated_data.values())
|
|
|
|
# Add 'close' values if matches found in price_list
|
|
matched = False
|
|
for entry in populated_data:
|
|
for price in price_list:
|
|
if entry['tape_time'] == price['time']:
|
|
entry['close'] = price['close']
|
|
matched = True
|
|
break # Exit inner loop once a match is found
|
|
|
|
|
|
return populated_data if matched else []
|
|
def main():
|
|
'''
|
|
sector_data = get_sector_data()
|
|
if len(sector_data) > 0:
|
|
save_json(sector_data)
|
|
'''
|
|
get_net_prem_ticks('XLB')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|