backend/app/cron_earnings_price_reaction.py
2025-02-10 22:59:18 +01:00

212 lines
8.2 KiB
Python

import aiohttp
import aiofiles
import ujson
import orjson
import sqlite3
import asyncio
import pandas as pd
import time
import os
from dotenv import load_dotenv
from datetime import datetime, timedelta
from ta.momentum import *
from tqdm import tqdm
import pytz
headers = {"accept": "application/json"}
url = "https://api.benzinga.com/api/v2.1/calendar/earnings"
load_dotenv()
api_key = os.getenv('BENZINGA_API_KEY')
ny_tz = pytz.timezone('America/New_York')
today = datetime.now(ny_tz).replace(hour=0, minute=0, second=0, microsecond=0)
min_date = ny_tz.localize(datetime.strptime("2020-01-01", "%Y-%m-%d"))
N_days_ago = today - timedelta(days=10)
async def save_json(data, symbol, dir_path):
file_path = os.path.join(dir_path, f"{symbol}.json")
async with aiofiles.open(file_path, 'w') as file:
await file.write(ujson.dumps(data))
async def compute_rsi(price_history, time_period=14):
df_price = pd.DataFrame(price_history)
df_price['rsi'] = rsi(df_price['close'], window=time_period)
result = df_price.to_dict(orient='records')
return result
async def calculate_price_reactions(ticker, filtered_data, price_history):
# Ensure price_history is sorted by date
price_history.sort(key=lambda x: x['time'])
results = []
with open(f"json/options-historical-data/companies/{ticker}.json",'r') as file:
iv_data = ujson.load(file)
for item in filtered_data:
report_date = item['date']
# Find the index of the report date in the price history
report_index = next((i for i, entry in enumerate(price_history) if entry['time'] == report_date), None)
if report_index is None:
continue # Skip if report date is not found in the price history
# Initialize a dictionary for price reactions
iv_value = next((entry['iv'] for entry in iv_data if entry['date'] == report_date), None)
#if iv_value is None:
# continue # Skip if no matching iv_data is found for the report_date
price_reactions = {
'date': report_date,
'quarter': item['quarter'],
'year': item['year'],
'time': item['time'],
'rsi': int(price_history[report_index]['rsi']),
'iv': iv_value,
}
for offset in [-4,-3,-2,-1,0,1,2,3,4,6]:
target_index = report_index + offset
# Ensure the target index is within bounds
if 0 <= target_index < len(price_history):
target_price_data = price_history[target_index]
previous_index = target_index - 1
# Ensure the previous index is within bounds
if 0 <= previous_index < len(price_history):
previous_price_data = price_history[previous_index]
# Calculate close price and percentage change
direction = "forward" if offset >= 0 else "backward"
days_key = f"{direction}_{abs(offset)}_days"
if offset != 1:
price_reactions[f"{days_key}_close"] = target_price_data['close']
price_reactions[f"{days_key}_change_percent"] = round(
(target_price_data['close'] / previous_price_data['close'] - 1) * 100, 2
)
if offset ==1:
price_reactions['open'] = target_price_data['open']
price_reactions['high'] = target_price_data['high']
price_reactions['low'] = target_price_data['low']
price_reactions['close'] = target_price_data['close']
price_reactions[f"open_change_percent"] = round((target_price_data['open'] / previous_price_data['close'] - 1) * 100, 2)
price_reactions[f"high_change_percent"] = round((target_price_data['high'] / previous_price_data['close'] - 1) * 100, 2)
price_reactions[f"low_change_percent"] = round((target_price_data['low'] / previous_price_data['close'] - 1) * 100, 2)
price_reactions[f"close_change_percent"] = round((target_price_data['close'] / previous_price_data['close'] - 1) * 100, 2)
results.append(price_reactions)
return results
async def get_past_data(data, ticker):
# Filter data based on date constraints
filtered_data = []
for item in data:
try:
item_date = ny_tz.localize(datetime.strptime(item["date"], "%Y-%m-%d"))
if min_date <= item_date <= today:
filtered_data.append(
{
'revenue': float(item['revenue']),
'revenueEst': float(item['revenue_est']),
'revenueSurprisePercent': round(float(item['revenue_surprise_percent'])*100, 2),
'eps': round(float(item['eps']), 2),
'epsEst': round(float(item['eps_est']), 2),
'epsSurprisePercent': round(float(item['eps_surprise_percent'])*100, 2),
'year': item['period_year'],
'quarter': item['period'],
'date': item['date'],
'time': item['time']
}
)
except:
pass
# Sort the filtered data by date
if len(filtered_data) > 0:
filtered_data.sort(key=lambda x: x['date'], reverse=True)
try:
# Load the price history data
with open(f"json/historical-price/max/{ticker}.json") as file:
price_history = orjson.loads(file.read())
price_history = await compute_rsi(price_history)
results = await calculate_price_reactions(ticker, filtered_data, price_history)
#print(results[0])
# Calculate statistics for earnings and revenue surprises
stats_dict = {
'totalReports': len(filtered_data[:8]),
'positiveEpsSurprises': len([r for r in filtered_data[:8] if r.get('epsSurprisePercent', 0) > 0]),
'positiveRevenueSurprises': len([r for r in filtered_data[:8] if r.get('revenueSurprisePercent', 0) > 0])
}
# Calculate percentages if there are results
if stats_dict['totalReports'] > 0:
stats_dict['positiveEpsPercent'] = round((stats_dict['positiveEpsSurprises'] / stats_dict['totalReports']) * 100)
stats_dict['positiveRevenuePercent'] = round((stats_dict['positiveRevenueSurprises'] / stats_dict['totalReports']) * 100)
else:
stats_dict['positiveEpsPercent'] = 0
stats_dict['positiveRevenuePercent'] = 0
# Add stats to first result entry if results exist
if results:
res_dict = {'stats': stats_dict, 'history': results}
await save_json(res_dict, ticker, 'json/earnings/past')
except:
pass
async def get_data(session, ticker):
querystring = {"token": api_key, "parameters[tickers]": ticker}
try:
async with session.get(url, params=querystring, headers=headers) as response:
data = ujson.loads(await response.text())['earnings']
await get_past_data(data, ticker)
except Exception as e:
print(e)
#pass
async def run(stock_symbols):
async with aiohttp.ClientSession() as session:
tasks = [get_data(session, symbol) for symbol in stock_symbols]
for f in tqdm(asyncio.as_completed(tasks), total=len(stock_symbols)):
await f
try:
con = sqlite3.connect('stocks.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
stock_symbols = [row[0] for row in cursor.fetchall()]
#stock_symbols = ['TSLA']
con.close()
asyncio.run(run(stock_symbols))
except Exception as e:
print(e)
finally:
con.close()