backend/app/cron_analyst_insight.py
2024-07-12 10:57:07 +02:00

113 lines
3.2 KiB
Python

from openai import OpenAI
import time
import ujson
import sqlite3
import requests
import os
from dotenv import load_dotenv
from tqdm import tqdm
from datetime import datetime
# Load environment variables
load_dotenv()
# Initialize OpenAI client
benzinga_api_key = os.getenv('BENZINGA_API_KEY')
openai_api_key = os.getenv('OPENAI_API_KEY')
org_id = os.getenv('OPENAI_ORG')
client = OpenAI(
api_key=openai_api_key,
organization=org_id,
)
headers = {"accept": "application/json"}
url = "https://api.benzinga.com/api/v1/analyst/insights"
def save_json(symbol, data):
with open(f"json/analyst/insight/{symbol}.json", 'w') as file:
ujson.dump(data, file)
def get_analyst_insight(ticker):
res_dict = {}
try:
querystring = {"token": benzinga_api_key,"symbols": ticker}
response = requests.request("GET", url, params=querystring)
output = ujson.loads(response.text)['analyst-insights'][0] #get the latest insight only
# Extracting required fields
res_dict = {
'insight': output['analyst_insights'],
'id': output['id'],
'date': datetime.strptime(output['date'], "%Y-%m-%d").strftime("%b %d, %Y")
}
except:
pass
return res_dict
# Function to summarize the text using GPT-3.5-turbo
def get_summary(data):
# Define the data to be summarized
# Format the data as a string
data_string = (
f"Insights: {data['insight']}"
)
response = client.chat.completions.create(
model="gpt-3.5-turbo-0125",
messages=[
{"role": "system", "content": "Summarize analyst insights clearly and concisely in under 400 characters. Ensure the summary is professional and easy to understand. Conclude with whether the report is bullish or bearish."},
{"role": "user", "content": data_string}
],
max_tokens=150,
temperature=0.7
)
summary = response.choices[0].message.content
data = {
'insight': summary,
'id': data['id'],
'date': data['date']
}
return data
try:
stock_con = sqlite3.connect('stocks.db')
stock_cursor = stock_con.cursor()
stock_cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
stock_symbols = [row[0] for row in stock_cursor.fetchall()]
stock_con.close()
for symbol in tqdm(stock_symbols):
try:
data = get_analyst_insight(symbol)
new_report_id = data.get('id', '')
try:
with open(f"json/analyst/insight/{symbol}.json", 'r') as file:
old_report_id = ujson.load(file).get('id', '')
except:
old_report_id = ''
#check first if new report id exist already to save money before sending it to closedai company
if new_report_id != old_report_id and len(data['insight']) > 0:
res = get_summary(data)
save_json(symbol, res)
else:
print('skipped')
except:
pass
except Exception as e:
print(e)