264 lines
9.5 KiB
Python
264 lines
9.5 KiB
Python
import requests
|
|
import orjson
|
|
import re
|
|
from datetime import datetime,timedelta
|
|
from dotenv import load_dotenv
|
|
import os
|
|
import sqlite3
|
|
import pandas as pd
|
|
import time
|
|
from tqdm import tqdm
|
|
from collections import defaultdict
|
|
|
|
|
|
|
|
#today = datetime.today()
|
|
#N_days_ago = today - timedelta(days=90)
|
|
|
|
query_template = """
|
|
SELECT date, close, change_percent
|
|
FROM "{ticker}"
|
|
WHERE date BETWEEN ? AND ?
|
|
"""
|
|
|
|
|
|
|
|
def save_json(data, symbol):
|
|
directory_path = f"json/options-historical-data/companies"
|
|
os.makedirs(directory_path, exist_ok=True) # Ensure the directory exists
|
|
with open(f"{directory_path}/{symbol}.json", 'wb') as file: # Use binary mode for orjson
|
|
file.write(orjson.dumps(data))
|
|
|
|
def safe_round(value, decimals=2):
|
|
try:
|
|
return round(float(value), decimals)
|
|
except (ValueError, TypeError):
|
|
return value
|
|
|
|
|
|
def calculate_iv_rank_for_all(data):
|
|
# Extract all IV values
|
|
iv_values = [entry['iv'] for entry in data if 'iv' in entry]
|
|
|
|
if not iv_values:
|
|
return None # No IV data available
|
|
|
|
# Compute highest and lowest IV
|
|
highest_iv = max(iv_values)
|
|
lowest_iv = min(iv_values)
|
|
|
|
# Calculate IV Rank for each entry
|
|
for entry in data:
|
|
if 'iv' in entry:
|
|
iv = entry['iv']
|
|
if highest_iv == lowest_iv:
|
|
entry['iv_rank'] = 100.0 # If all IVs are the same, rank is 100%
|
|
else:
|
|
entry['iv_rank'] = round(((iv - lowest_iv) / (highest_iv - lowest_iv)) * 100,2)
|
|
else:
|
|
entry['iv_rank'] = None # Handle missing IV
|
|
|
|
return data
|
|
|
|
|
|
def prepare_data(data, symbol):
|
|
|
|
data = [entry for entry in data if entry['call_volume'] != 0 or entry['put_volume'] != 0]
|
|
|
|
start_date_str = data[-1]['date']
|
|
end_date_str = data[0]['date']
|
|
|
|
query = query_template.format(ticker=symbol)
|
|
df_price = pd.read_sql_query(query, con if symbol in stocks_symbols else etf_con, params=(start_date_str, end_date_str)).round(2)
|
|
df_price = df_price.rename(columns={"change_percent": "changesPercentage"})
|
|
|
|
# Convert the DataFrame to a dictionary for quick lookups by date
|
|
df_change_dict = df_price.set_index('date')['changesPercentage'].to_dict()
|
|
df_close_dict = df_price.set_index('date')['close'].to_dict()
|
|
|
|
res_list = []
|
|
|
|
for item in data:
|
|
try:
|
|
# Round numerical and numerical-string values
|
|
new_item = {
|
|
key: safe_round(value) if isinstance(value, (int, float, str)) else value
|
|
for key, value in item.items()
|
|
}
|
|
|
|
# Add parsed fields
|
|
new_item['volume'] = round(new_item['call_volume'] + new_item['put_volume'], 2)
|
|
new_item['putCallRatio'] = round(new_item['put_volume']/new_item['call_volume'],2)
|
|
#new_item['avgVolumeRatio'] = round(new_item['volume'] / (round(new_item['avg_30_day_call_volume'] + new_item['avg_30_day_put_volume'], 2)), 2)
|
|
new_item['total_premium'] = round(new_item['call_premium'] + new_item['put_premium'], 2)
|
|
#new_item['net_premium'] = round(new_item['net_call_premium'] - new_item['net_put_premium'],2)
|
|
new_item['total_open_interest'] = round(new_item['call_open_interest'] + new_item['put_open_interest'], 2)
|
|
|
|
|
|
#bearish_premium = float(item['bearish_premium'])
|
|
#bullish_premium = float(item['bullish_premium'])
|
|
#neutral_premium = calculate_neutral_premium(item)
|
|
'''
|
|
new_item['premium_ratio'] = [
|
|
safe_round(bearish_premium),
|
|
neutral_premium,
|
|
safe_round(bullish_premium)
|
|
]
|
|
'''
|
|
|
|
# Add changesPercentage if the date exists in df_change_dict
|
|
if item['date'] in df_change_dict:
|
|
new_item['changesPercentage'] = float(df_change_dict[item['date']])
|
|
else:
|
|
new_item['changesPercentage'] = None
|
|
|
|
if item['date'] in df_close_dict:
|
|
new_item['price'] = float(df_close_dict[item['date']])
|
|
else:
|
|
new_item['price'] = None
|
|
|
|
res_list.append(new_item)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
|
|
res_list = sorted(res_list, key=lambda x: x['date'])
|
|
|
|
for i in range(1, len(res_list)):
|
|
try:
|
|
current_open_interest = res_list[i]['total_open_interest']
|
|
previous_open_interest = res_list[i-1]['total_open_interest']
|
|
changes_percentage_oi = round((current_open_interest/previous_open_interest -1)*100,2)
|
|
res_list[i]['changesPercentageOI'] = changes_percentage_oi
|
|
res_list[i]['changeOI'] = current_open_interest-previous_open_interest
|
|
except:
|
|
res_list[i]['changesPercentageOI'] = None
|
|
res_list[i]['changeOI'] = None
|
|
|
|
res_list = sorted(res_list, key=lambda x: x['date'],reverse=True)
|
|
|
|
if res_list:
|
|
save_json(res_list, symbol)
|
|
|
|
|
|
def get_contracts_from_directory(directory: str):
|
|
try:
|
|
# Ensure the directory exists
|
|
if not os.path.exists(directory):
|
|
return []
|
|
|
|
# Get all tickers from filenames
|
|
return [file.replace(".json", "") for file in os.listdir(directory) if file.endswith(".json")]
|
|
|
|
except Exception as e:
|
|
print(e)
|
|
return []
|
|
|
|
|
|
def aggregate_data_by_date(symbol):
|
|
data_by_date = defaultdict(lambda: {
|
|
"date": "",
|
|
"call_volume": 0,
|
|
"put_volume": 0,
|
|
"call_open_interest": 0,
|
|
"put_open_interest": 0,
|
|
"call_premium": 0,
|
|
"call_net_premium": 0,
|
|
"put_premium": 0,
|
|
"put_net_premium": 0,
|
|
"iv": 0, # Sum of implied volatilities
|
|
"iv_count": 0, # Count of entries for IV
|
|
})
|
|
|
|
contract_dir = f"json/all-options-contracts/{symbol}"
|
|
contract_list = get_contracts_from_directory(contract_dir)
|
|
|
|
if len(contract_list) > 0:
|
|
|
|
for item in contract_list:
|
|
try:
|
|
file_path = os.path.join(contract_dir, f"{item}.json")
|
|
with open(file_path, "r") as file:
|
|
data = orjson.loads(file.read())
|
|
|
|
option_type = data.get('optionType', None)
|
|
if option_type not in ['call', 'put']:
|
|
continue
|
|
|
|
for entry in data.get('history', []):
|
|
date = entry.get('date')
|
|
volume = entry.get('volume', 0) or 0
|
|
open_interest = entry.get('open_interest', 0) or 0
|
|
total_premium = entry.get('total_premium', 0) or 0
|
|
implied_volatility = entry.get('implied_volatility', 0) or 0
|
|
|
|
if date:
|
|
daily_data = data_by_date[date]
|
|
daily_data["date"] = date
|
|
|
|
if option_type == 'call':
|
|
daily_data["call_volume"] += int(volume)
|
|
daily_data["call_open_interest"] += int(open_interest)
|
|
daily_data["call_premium"] += int(total_premium)
|
|
elif option_type == 'put':
|
|
daily_data["put_volume"] += int(volume)
|
|
daily_data["put_open_interest"] += int(open_interest)
|
|
daily_data["put_premium"] += int(total_premium)
|
|
daily_data["iv"] += round(implied_volatility, 2)
|
|
daily_data["iv_count"] += 1
|
|
|
|
try:
|
|
daily_data["putCallRatio"] = round(daily_data["put_volume"] / daily_data["call_volume"], 2)
|
|
except ZeroDivisionError:
|
|
daily_data["putCallRatio"] = None
|
|
|
|
except:
|
|
pass
|
|
|
|
# Convert to list of dictionaries and sort by date
|
|
data = list(data_by_date.values())
|
|
for daily_data in data:
|
|
try:
|
|
if daily_data["iv_count"] > 0:
|
|
daily_data["iv"] = round(daily_data["iv"] / daily_data["iv_count"], 2)
|
|
else:
|
|
daily_data["iv"] = None # Or set it to 0 if you prefer
|
|
except:
|
|
daily_data["iv"] = None
|
|
|
|
data = sorted(data, key=lambda x: x['date'], reverse=True)
|
|
data = calculate_iv_rank_for_all(data)
|
|
|
|
return data
|
|
else:
|
|
return []
|
|
|
|
|
|
|
|
|
|
# Connect to the databases
|
|
con = sqlite3.connect('stocks.db')
|
|
etf_con = sqlite3.connect('etf.db')
|
|
cursor = con.cursor()
|
|
cursor.execute("PRAGMA journal_mode = wal")
|
|
#cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%' AND marketCap > 1E9")
|
|
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
|
|
stocks_symbols = [row[0] for row in cursor.fetchall()]
|
|
|
|
etf_cursor = etf_con.cursor()
|
|
etf_cursor.execute("PRAGMA journal_mode = wal")
|
|
#etf_cursor.execute("SELECT DISTINCT symbol FROM etfs WHERE marketCap > 1E9")
|
|
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
|
|
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
|
|
total_symbols = stocks_symbols + etf_symbols
|
|
|
|
|
|
for symbol in tqdm(total_symbols):
|
|
try:
|
|
data = aggregate_data_by_date(symbol)
|
|
data = prepare_data(data, symbol)
|
|
except:
|
|
pass
|
|
|
|
con.close()
|
|
etf_con.close() |