113 lines
4.3 KiB
Python
113 lines
4.3 KiB
Python
from datetime import datetime, timedelta
|
|
import ujson
|
|
import sqlite3
|
|
import asyncio
|
|
import aiohttp
|
|
from tqdm import tqdm
|
|
import os
|
|
from dotenv import load_dotenv
|
|
from aiohttp import TCPConnector
|
|
|
|
load_dotenv()
|
|
api_key = os.getenv('FMP_API_KEY')
|
|
|
|
# Rate limiting
|
|
MAX_REQUESTS_PER_MINUTE = 100
|
|
request_semaphore = asyncio.Semaphore(MAX_REQUESTS_PER_MINUTE)
|
|
last_request_time = datetime.min
|
|
|
|
async def fetch_data(session, url):
|
|
global last_request_time
|
|
async with request_semaphore:
|
|
# Ensure at least 60 seconds between batches of MAX_REQUESTS_PER_MINUTE
|
|
current_time = datetime.now()
|
|
if (current_time - last_request_time).total_seconds() < 60:
|
|
await asyncio.sleep(60 - (current_time - last_request_time).total_seconds())
|
|
last_request_time = datetime.now()
|
|
|
|
try:
|
|
async with session.get(url) as response:
|
|
if response.status == 200:
|
|
return await response.json()
|
|
else:
|
|
print(f"Error status {response.status} for URL: {url}")
|
|
return []
|
|
except Exception as e:
|
|
print(f"Error fetching data from {url}: {e}")
|
|
return []
|
|
|
|
def get_existing_data(symbol, interval):
|
|
file_path = f"json/export/price/{interval}/{symbol}.json"
|
|
if os.path.exists(file_path):
|
|
with open(file_path, 'r') as file:
|
|
return ujson.load(file)
|
|
return []
|
|
|
|
async def get_data(session, symbol, time_period):
|
|
existing_data = get_existing_data(symbol, time_period)
|
|
if not existing_data:
|
|
return await fetch_all_data(session, symbol, time_period)
|
|
|
|
last_date = datetime.strptime(existing_data[-1]['date'], "%Y-%m-%d %H:%M:%S")
|
|
current_date = datetime.utcnow()
|
|
|
|
if (current_date - last_date).days < 1:
|
|
return # Data is up to date, skip to next symbol
|
|
|
|
# Fetch only missing data
|
|
start_date = (last_date + timedelta(days=1)).strftime("%Y-%m-%d")
|
|
end_date = current_date.strftime("%Y-%m-%d")
|
|
url = f"https://financialmodelingprep.com/api/v3/historical-chart/{time_period}/{symbol}?serietype=bar&extend=false&from={start_date}&to={end_date}&apikey={api_key}"
|
|
|
|
new_data = await fetch_data(session, url)
|
|
if new_data:
|
|
existing_data.extend(new_data)
|
|
existing_data.sort(key=lambda x: x['date'])
|
|
await save_json(symbol, existing_data, time_period)
|
|
|
|
async def fetch_all_data(session, symbol, time_period):
|
|
end_date = datetime.utcnow()
|
|
start_date = end_date - timedelta(days=180)
|
|
url = f"https://financialmodelingprep.com/api/v3/historical-chart/{time_period}/{symbol}?serietype=bar&extend=false&from={start_date.strftime('%Y-%m-%d')}&to={end_date.strftime('%Y-%m-%d')}&apikey={api_key}"
|
|
|
|
data = await fetch_data(session, url)
|
|
if data:
|
|
data.sort(key=lambda x: x['date'])
|
|
await save_json(symbol, data, time_period)
|
|
|
|
async def save_json(symbol, data, interval):
|
|
os.makedirs(f"json/export/price/{interval}", exist_ok=True)
|
|
with open(f"json/export/price/{interval}/{symbol}.json", 'w') as file:
|
|
ujson.dump(data, file)
|
|
|
|
async def process_symbol(session, symbol):
|
|
await get_data(session, symbol, '30min')
|
|
await get_data(session, symbol, '1hour')
|
|
|
|
async def run():
|
|
con = sqlite3.connect('stocks.db')
|
|
cursor = con.cursor()
|
|
cursor.execute("PRAGMA journal_mode = wal")
|
|
cursor.execute("SELECT DISTINCT symbol FROM stocks")
|
|
stock_symbols = [row[0] for row in cursor.fetchall()]
|
|
|
|
etf_con = sqlite3.connect('etf.db')
|
|
etf_cursor = etf_con.cursor()
|
|
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
|
|
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
|
|
|
|
con.close()
|
|
etf_con.close()
|
|
|
|
total_symbols = stock_symbols + etf_symbols
|
|
|
|
connector = TCPConnector(limit=MAX_REQUESTS_PER_MINUTE)
|
|
async with aiohttp.ClientSession(connector=connector) as session:
|
|
tasks = [process_symbol(session, symbol) for symbol in total_symbols]
|
|
for i, _ in enumerate(tqdm(asyncio.as_completed(tasks), total=len(tasks)), 1):
|
|
if i % MAX_REQUESTS_PER_MINUTE == 0:
|
|
print(f'Processed {i} symbols')
|
|
await asyncio.sleep(60) # Sleep for 60 seconds after every MAX_REQUESTS_PER_MINUTE symbols
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(run()) |