backend/app/cron_industry.py
2024-09-16 15:49:05 +02:00

111 lines
4.7 KiB
Python

import aiohttp
import ujson
import sqlite3
import asyncio
import pandas as pd
from tqdm import tqdm
import orjson
from collections import defaultdict
with open(f"json/stock-screener/data.json", 'rb') as file:
stock_screener_data = orjson.loads(file.read())
# Convert stock_screener_data into a dictionary keyed by symbol
stock_screener_data_dict = {item['symbol']: item for item in stock_screener_data}
def save_as_json(data):
with open(f"json/industry/overview.json", 'w') as file:
ujson.dump(data, file)
#async def get_data():
def run():
# Initialize a dictionary to store stock count, market cap, and other totals for each industry
sector_industry_data = defaultdict(lambda: defaultdict(lambda: {
'numStocks': 0,
'totalMarketCap': 0.0,
'totalPE': 0.0,
'totalDividendYield': 0.0,
'totalNetIncome': 0.0,
'totalRevenue': 0.0,
'totalChange1M': 0.0,
'totalChange1Y': 0.0,
'peCount': 0,
'dividendCount': 0,
'change1MCount': 0,
'change1YCount': 0
}))
# Iterate through stock_screener_data to accumulate values
for stock in stock_screener_data:
sector = stock.get('sector')
industry = stock.get('industry')
market_cap = stock.get('marketCap')
pe = stock.get('pe')
dividend_yield = stock.get('dividendYield')
net_income = stock.get('netIncome')
revenue = stock.get('revenue')
change_1_month = stock.get('change1M')
change_1_year = stock.get('change1Y')
# Ensure both sector and industry are valid and that market cap is a valid number
if sector and industry and market_cap is not None:
# Update stock count and accumulate market cap
sector_industry_data[sector][industry]['numStocks'] += 1
sector_industry_data[sector][industry]['totalMarketCap'] += float(market_cap)
# Accumulate PE ratio if available
if pe is not None:
sector_industry_data[sector][industry]['totalPE'] += float(pe)
sector_industry_data[sector][industry]['peCount'] += 1
# Accumulate dividend yield if available
if dividend_yield is not None:
sector_industry_data[sector][industry]['totalDividendYield'] += float(dividend_yield)
sector_industry_data[sector][industry]['dividendCount'] += 1
# Accumulate net income and revenue for profit margin calculation
if net_income is not None and revenue is not None:
sector_industry_data[sector][industry]['totalNetIncome'] += float(net_income)
sector_industry_data[sector][industry]['totalRevenue'] += float(revenue)
# Accumulate 1-month change if available
if change_1_month is not None:
sector_industry_data[sector][industry]['totalChange1M'] += float(change_1_month)
sector_industry_data[sector][industry]['change1MCount'] += 1
# Accumulate 1-year change if available
if change_1_year is not None:
sector_industry_data[sector][industry]['totalChange1Y'] += float(change_1_year)
sector_industry_data[sector][industry]['change1YCount'] += 1
# Prepare the final data in the requested format
result = {}
for sector, industries in sector_industry_data.items():
# Sort industries by stock count in descending order
sorted_industries = sorted(industries.items(), key=lambda x: x[1]['numStocks'], reverse=True)
# Add sorted industries with averages to the result for each sector
result[sector] = [
{
'industry': industry,
'numStocks': data['numStocks'],
'totalMarketCap': data['totalMarketCap'],
'pe': round((data['totalMarketCap'] / data['totalNetIncome']),2) if data['totalNetIncome'] > 0 else None,
'avgDividendYield': round((data['totalDividendYield'] / data['dividendCount']),2) if data['dividendCount'] > 0 else None,
'profitMargin': round((data['totalNetIncome'] / data['totalRevenue'])*100,2) if data['totalRevenue'] > 0 else None,
'avgChange1M': round((data['totalChange1M'] / data['change1MCount']),2) if data['change1MCount'] > 0 else None,
'avgChange1Y': round((data['totalChange1Y'] / data['change1YCount']),2) if data['change1YCount'] > 0 else None
} for industry, data in sorted_industries
]
print(result)
save_as_json(result)
run()