backend/app/cron_dark_pool_flow.py
2024-12-25 12:49:51 +01:00

161 lines
5.7 KiB
Python

import os
import pandas as pd
import orjson
from dotenv import load_dotenv
import sqlite3
from datetime import datetime
import pytz
import requests # Add missing import
from dateutil.parser import isoparse
load_dotenv()
api_key = os.getenv('UNUSUAL_WHALES_API_KEY')
querystring = {"limit": "200"}
url = "https://api.unusualwhales.com/api/darkpool/recent"
headers = {
"Accept": "application/json, text/plain",
"Authorization": api_key
}
with open(f"json/stock-screener/data.json", 'rb') as file:
stock_screener_data = orjson.loads(file.read())
stock_screener_data_dict = {item['symbol']: item for item in stock_screener_data}
quote_cache = {}
def get_quote_data(symbol):
"""Get quote data for a symbol from JSON file"""
if symbol in quote_cache:
return quote_cache[symbol]
try:
with open(f"json/quote/{symbol}.json") as file:
quote_data = orjson.loads(file.read())
quote_cache[symbol] = quote_data # Cache the loaded data
return quote_data
except FileNotFoundError:
return None
def load_json(file_path):
"""Load existing JSON data from file."""
if os.path.exists(file_path):
try:
with open(file_path, 'r') as file:
return orjson.loads(file.read())
except (ValueError, IOError):
print(f"Warning: Could not read or parse {file_path}. Starting with an empty list.")
return []
def save_latest_ratings(combined_data, json_file_path, limit=2000):
try:
# Create a set to track unique entries based on a combination of 'ticker' and 'date'
seen = set()
unique_data = []
for item in combined_data:
identifier = f"{item['trackingID']}"
if identifier not in seen:
seen.add(identifier)
unique_data.append(item)
# Sort the data by date
sorted_data = sorted(unique_data, key=lambda x: datetime.fromisoformat(x['date'].replace('Z', '+00:00')), reverse=True)
# Keep only the latest `limit` entries
latest_data = sorted_data[:limit]
# Save the trimmed and deduplicated data to the JSON file
with open(json_file_path, 'wb') as file:
file.write(orjson.dumps(latest_data))
print(f"Saved {len(latest_data)} unique and latest ratings to {json_file_path}.")
except Exception as e:
print(f"An error occurred while saving data: {e}")
def get_data():
try:
response = requests.get(url, headers=headers, params=querystring)
return response.json().get('data', [])
except Exception as e:
print(f"Error fetching data: {e}")
return []
def main():
# Load environment variables
con = sqlite3.connect('stocks.db')
cursor = con.cursor()
cursor.execute("PRAGMA journal_mode = wal")
cursor.execute("SELECT DISTINCT symbol FROM stocks WHERE symbol NOT LIKE '%.%'")
stock_symbols = [row[0] for row in cursor.fetchall()]
etf_con = sqlite3.connect('etf.db')
etf_cursor = etf_con.cursor()
etf_cursor.execute("SELECT DISTINCT symbol FROM etfs")
etf_symbols = [row[0] for row in etf_cursor.fetchall()]
total_symbols = stock_symbols + etf_symbols
con.close()
etf_con.close()
json_file_path = 'json/dark-pool/feed/data.json'
existing_data = load_json(json_file_path)
# Transform existing data into a set of unique trackingIDs
existing_keys = {item.get('trackingID',None) for item in existing_data}
data = get_data()
# Prepare results with only new data
res = []
for item in data:
symbol = item['ticker']
if symbol.lower() == 'brk.b':
item['ticker'] = 'BRK-B'
symbol = item['ticker']
if symbol.lower() == 'brk.a':
item['ticker'] = 'BRK-A'
symbol = item['ticker']
if symbol in total_symbols:
quote_data = get_quote_data(symbol)
if symbol in stock_symbols:
asset_type = 'Stock'
else:
asset_type = 'ETF'
try:
# Check if the data is already in the file
if item['tracking_id'] not in existing_keys:
try:
sector = stock_screener_data_dict[symbol].get('sector', None)
except:
sector = None
volume = float(item['volume'])
size = float(item['size'])
daily_volume_percentage = round((size / volume) * 100, 2)
avg_volume_percentage = round((size / quote_data.get('avgVolume', 1)) * 100, 2)
res.append({
'ticker': item['ticker'],
'date': item['executed_at'],
'price': round(float(item['price']),2),
'size': item['size'],
'volume': volume,
'premium': item['premium'],
'sector': sector,
'assetType': asset_type,
'dailyVolumePercentage': daily_volume_percentage,
'avgVolumePercentage': avg_volume_percentage,
'trackingID': item['tracking_id']
})
except Exception as e:
print(f"Error processing {symbol}: {e}")
# Append new data to existing data and combine
combined_data = existing_data + res
# Save the updated data
save_latest_ratings(combined_data, json_file_path)
if __name__ == '__main__':
main()